Core–Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires

GaAs nanowire arrays have been prepared by anodization of GaAs substrates. The nanowires produced on (111)B GaAs substrates were found to be oriented predominantly perpendicular to the substrate surface. The prepared nanowire arrays have been coated with thin ZnO or TiO2 layers by means of thermal atomic layer deposition (ALD), thus coaxial core–shell hybrid structures are being fabricated. The hybrid structures have been characterized by scanning electron microscopy (SEM) for the morphology investigations, by Energy Dispersive X-ray (EDX) and X-ray diffraction (XRD) analysis for the composition and crystal structure assessment, and by photoluminescence (PL) spectroscopy for obtaining an insight on emission polarization related to different recombination channels in the prepared core–shell structures.

[1]  V. Ursaki,et al.  Core–Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties , 2022, Nanomaterials.

[2]  K. Nielsch,et al.  Characteristics of ALD‐ZnO Thin Film Transistor Using H2O and H2O2 as Oxygen Sources , 2022, Advanced Materials Interfaces.

[3]  K. Nielsch,et al.  Effect of Powder ALD Interface Modification on the Thermoelectric Performance of Bismuth , 2021, Advanced Materials Technologies.

[4]  N. Lewis,et al.  Defect-Tolerant TiO2-Coated and Discretized Photoanodes for >600 h of Stable Photoelectrochemical Water Oxidation , 2020, ACS Energy Letters.

[5]  Ashish K. Gupta,et al.  High-Temperature Atomic Layer Deposition of GaN on 1D Nanostructures , 2020, Nanomaterials.

[6]  V. Ursaki,et al.  Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires , 2020, Beilstein journal of nanotechnology.

[7]  V. Ursaki,et al.  Porous semiconductor compounds , 2020, Semiconductor Science and Technology.

[8]  Hui Wang,et al.  ZnO@TiO2 Core/Shell Nanowire Arrays with Different Thickness of TiO2 Shell for Dye-Sensitized Solar Cells , 2020 .

[9]  I. Buyanova,et al.  Dilute nitrides-based nanowires—a promising platform for nanoscale photonics and energy technology , 2019, Nanotechnology.

[10]  Miquel Royo,et al.  A review on III–V core–multishell nanowires: growth, properties, and applications , 2017 .

[11]  F. Fang,et al.  Surface passivation of GaAs using atomic layer deposition grown MgO , 2015 .

[12]  Tzu-ging Lin,et al.  Tailoring Optical and Plasmon Resonances in Core-shell and Core-multishell Nanowires for Visible Range Negative Refraction and Plasmonic Light Harvesting:A Review , 2015 .

[13]  R. Grange Nonlinear Optical Enhancement with Plasmonic Core: Shell Nanowires , 2015 .

[14]  Woo Lee,et al.  High efficiency n-ZnO/p-Si core-shell nanowire photodiode based on well-ordered Si nanowire array with smooth surface , 2014 .

[15]  J. Lian,et al.  High quality ZnO–TiO2 core–shell nanowires for efficient ultraviolet sensing , 2014 .

[16]  I. Buyanova,et al.  Origin of strong photoluminescence polarization in GaNP nanowires. , 2014, Nano letters.

[17]  F. Julien,et al.  Photoluminescence polarization in strained GaN/AlGaN core/shell nanowires , 2012, Nanotechnology.

[18]  Hyemin Kang,et al.  n-ZnO:N/p-Si nanowire photodiode prepared by atomic layer deposition , 2012 .

[19]  Hyoun-woo Kim,et al.  Atomic layer deposition coating of ZnO shell for GaN–ZnO core-sheath heteronanowires , 2011 .

[20]  Dong Chan Kim,et al.  Highly selective spectral response with enhanced responsivity of n-ZnO/p-Si radial heterojunction nanowire photodiodes , 2011 .

[21]  S. Y. Serov,et al.  Photoluminescence properties of GaAs nanowire ensembles with zincblende and wurtzite crystal structure , 2010 .

[22]  C. Ku,et al.  Epitaxial growth of ZnO films at extremely low temperature by atomic layer deposition with interrupted flow , 2010 .

[23]  A. Nduwimana,et al.  Spatial carrier confinement in core-shell and multishell nanowire heterostructures. , 2008, Nano letters.

[24]  Ion Tiginyanu,et al.  Ordered arrays of metal nanotubes in semiconductor envelope , 2008 .

[25]  Lyubov V. Titova,et al.  Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires , 2007 .

[26]  Lin-wang Wang,et al.  "Quantum coaxial cables" for solar energy harvesting. , 2007, Nano letters.

[27]  A. Greytak,et al.  Core–Shell Nanowire Light‐Emitting Diodes , 2005 .

[28]  Veaceslav Ursaki,et al.  Photoluminescence of ZnO layers grown on opals by chemical deposition from zinc nitrate solution , 2004 .

[29]  V. Ursaki,et al.  Photoluminescence and resonant Raman scattering from ZnO-opal structures , 2004 .

[30]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[31]  Kwan Soo Chung,et al.  Nanoscale Ultraviolet‐Light‐Emitting Diodes Using Wide‐Bandgap Gallium Nitride Nanorods , 2003 .

[32]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[33]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[34]  M. Oh,et al.  Photoluminescence investigation of the 1.356 eV band and stoichiometry in undoped GaAs , 1989 .

[35]  S. Pearton,et al.  Photoluminescence from annealed semi‐insulating GaAs crystals: The 1.360‐eV band , 1988 .

[36]  Kazuhiro Kudo,et al.  Photoluminescence spectra of undoped GaAs grown by molecular‐beam epitaxy at very high and low substrate temperatures , 1986 .

[37]  Kai Wang II-VI Core-Shell Nanowires: Synthesis, Characterizations and Photovoltaic Applications , 2012 .

[38]  J. Wu,et al.  Synthesis of SnO 2 -ZnO core-shell nanowires and their optoelectronic properties , 2012 .

[39]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.