The ABCs of linear block codes

The basic principles of block codes are presented with illustrations to visualize the concepts of vector spaces and subspaces. Intuitive explanations of goals, capabilities, and limitations of codes are offered. An important subclass of block codes called cyclic codes is examined. Their algebraic structure is described and looked at the very popular BCH and R-S cyclic codes. In addition, the newest techniques, turbo codes and LDPC codes, that use iterative decoding to obtain performance exceedingly close to theoretical limitations.

[1]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[2]  James L. Massey,et al.  Deep-space communications and coding: A marriage made in heaven , 1992 .

[3]  Steven S. Pietrobon Implementation and performance of a turbo/MAP decoder , 1998, Int. J. Satell. Commun. Netw..

[4]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[5]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[6]  Shu Lin,et al.  Iterative decoding of one-step majority logic deductible codes based on belief propagation , 2000, IEEE Trans. Commun..

[7]  D. Divsalar,et al.  On the Design of Turbo Codes , 1995 .

[8]  Paul C. van Oorschot,et al.  An Introduction to Error Correcting Codes with Applications , 1989 .

[9]  Jr. G. Forney,et al.  Burst-Correcting Codes for the Classic Bursty Channel , 1971 .

[10]  Torleiv Kløve,et al.  Linear block codes for error detection , 1983, IEEE Trans. Inf. Theory.

[11]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[12]  David J. C. MacKay,et al.  Comparison of constructions of irregular Gallager codes , 1999, IEEE Trans. Commun..

[13]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[15]  Hideki Imai,et al.  Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..

[16]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[17]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[18]  Stephen B. Wicker,et al.  Reed-Solomon Codes and Their Applications , 1999 .

[19]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[20]  J.L. Massey,et al.  Theory and practice of error control codes , 1986, Proceedings of the IEEE.

[21]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[22]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[23]  Frank R. Kschischang Codes defined on graphs , 2003, IEEE Commun. Mag..

[24]  Dariush Divsalar,et al.  Turbo codes for PCS applications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[25]  F. Lemmermeyer Error-correcting Codes , 2005 .

[26]  Amin Shokrollahi,et al.  LDPC Codes: An Introduction , 2004 .

[27]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[28]  Venkat Anantharam,et al.  Iterative decoder architectures , 2003, IEEE Commun. Mag..

[29]  Allan O. Steinhardt,et al.  Fast algorithms for digital signal processing , 1986, Proceedings of the IEEE.

[30]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[31]  Shu Lin,et al.  On the probability of undetected error of linear block codes , 1982 .

[32]  Elwyn R. Berlekamp,et al.  On decoding binary Bose-Chadhuri- Hocquenghem codes , 1965, IEEE Trans. Inf. Theory.

[33]  J. Snyders,et al.  On the effective free distance of turbo codes , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[34]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[35]  Sergio Benedetto,et al.  A soft-input soft-output maximum a posteriori (MAP) module to decode parallel and serial concatenated codes , 1996 .

[36]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .

[37]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[38]  Hongxin Song,et al.  Low density parity check codes for magnetic recording channels , 2000 .

[39]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[40]  Rüdiger L. Urbanke,et al.  The renaissance of Gallager's low-density parity-check codes , 2003, IEEE Commun. Mag..

[41]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[42]  D. Divsalar,et al.  Multiple turbo codes for deep-space communications , 1995 .

[43]  Iain E. G. Richardson,et al.  Digital Video Communications , 1997 .

[44]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[45]  Dwijendra K. Ray-Chaudhuri,et al.  Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.

[46]  Robert J. McEliece,et al.  The Ultimate Limits of Binary Coding for a Wideband Gaussian Channel , 1974 .

[47]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[48]  David Hertz,et al.  Memory/speed tradeoffs for look-up table decoding of systematic linear block codes , 1990, IEEE Trans. Commun..

[49]  Herman Schmit,et al.  Implementation of near Shannon limit error-correcting codes using reconfigurable hardware , 2000, Proceedings 2000 IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00871).

[50]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[51]  Dariush Divsalar,et al.  Soft-Output Decoding Algorithms in Iterative Decoding of Turbo Codes , 1996 .

[52]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[53]  Dwijendra K. Ray-Chaudhuri,et al.  Further Results on Error Correcting Binary Group Codes , 1960, Inf. Control..

[54]  Joachim Hagenauer,et al.  A Serial Concatenated Coding Scheme with Iterative 'Turbo'- and Feedback Decoding , 1997 .

[55]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[56]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[57]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[58]  Ken C. Pohlman The compact disc handbook (2nd ed.) , 1992 .

[59]  E. Eleftheriou,et al.  Channel precoding and low-density parity-check codes for magnetic recording , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[60]  Dariush Divsalar,et al.  A soft-input soft-output APP module for iterative decoding of concatenated codes , 1997, IEEE Communications Letters.

[61]  D. Divsalar,et al.  Turbo codes for deep-space communications , 1995 .

[62]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.