Large bulk polarization and regular domain structure in ceramic BiFeO3

Regularly twinned domain structures are observed by scanning piezoforce microscopy on single crystalline grains of BiFeO3 ceramics being grown by a special low temperature sintering process. The domains are considerably larger than those observed in thin films. Their spontaneous polarization comes close to that predicted theoretically and overcomes restrictions hitherto being set to bulk single crystals. The observed ferroelastic twin domain structure resembles that of classic T domains in rhombohedrally distorted NiO, but is additionally superimposed by ferroelectric twin domain patterns.

[1]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[2]  D. Wu,et al.  Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure , 2005 .

[3]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[4]  G. A. Smolenskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Ferroelectromagnets , 1982 .

[5]  Robert Gerson,et al.  Dielectric hysteresis in single crystal BiFeO3 , 1970 .

[6]  N. Setter,et al.  Enhancement of the piezoelectric response of tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: A free-energy approach , 2005 .

[7]  Mahesh Kumar,et al.  Ferroelectricity in a pure BiFeO3 ceramic , 2000 .

[8]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[9]  P. Bouvier,et al.  Raman scattering of the model multiferroic oxide BiFeO3: effect of temperature, pressure and stress , 2006 .

[10]  Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’ , 2006, 0812.0484.

[11]  E. A. Turov Can the magnetoelectric effect coexist with weak piezomagnetism and ferromagnetism? , 1994 .

[12]  G. A. Slack,et al.  Crystallography and Domain Walls in Antiferromagnetic NiO Crystals , 1960 .

[13]  H. Fjellvåg,et al.  Theoretical investigation of magnetoelectric behavior in BiFeO3 , 2006 .

[14]  Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite , 2005, cond-mat/0502364.

[15]  S. Or,et al.  Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1−xNdxFeO3 (x=0–0.15) ceramics , 2006 .

[16]  P. Günter,et al.  Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy , 1998 .

[17]  M. Okuyama,et al.  Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition , 2003 .

[18]  Y. Eugene Pak,et al.  Principle of ferroelectric domain imaging using atomic force microscope , 2001 .

[19]  Junling Wang,et al.  Epitaxial BiFeO3 thin films on Si , 2004 .

[20]  P. Fischer,et al.  Temperature dependence of the crystal and magnetic structures of BiFeO3 , 1980 .

[21]  L. E. Cross,et al.  Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization , 2005 .

[22]  K. Bouzehouane,et al.  Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films , 2006, cond-mat/0607563.

[23]  U. V. Waghmare,et al.  First-principles study of spontaneous polarization in multiferroic BiFeO 3 , 2005 .

[24]  C. Ong,et al.  BiFeO3 film deposited on Si substrate buffered with La0.7Sr0.3MnO3 electrode , 2006 .

[25]  N. Setter,et al.  Piezoelectric anisotropy: Enhanced piezoelectric response along nonpolar directions in perovskite crystals , 2006 .

[26]  C. Eom,et al.  Polarization switching in epitaxial BiFeO3 films , 2005 .