Engineering the Interface Between Cellular Chassis and Integrated Biological Systems

[1]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[2]  F. Studier Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. , 1991, Journal of molecular biology.

[3]  R. Burgess,et al.  RNA Polymerases from Bacillus subtilisand Escherichia coli Differ in Recognition of Regulatory Signals In Vitro , 2000, Journal of bacteriology.

[4]  R. Gourse,et al.  rRNA transcription in Escherichia coli. , 2004, Annual review of genetics.

[5]  R. Ulrich,et al.  Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. , 2004, Journal of medical microbiology.

[6]  Bjarke Bak Christensen,et al.  gfp-Based N-Acyl Homoserine-Lactone Sensor Systems for Detection of Bacterial Communication , 2001, Applied and Environmental Microbiology.

[7]  C. Squires,et al.  An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Schlessinger,et al.  Mechanism and regulation of bacterial ribosomal RNA processing. , 1990, Annual review of microbiology.

[9]  M. Sekiguchi,et al.  Replication of plasmid pSC101 inEscherichia coli K12: Requirement fordnaA function , 1977, Molecular and General Genetics MGG.

[10]  S. Lovett Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences , 2004, Molecular microbiology.

[11]  V. Stewart,et al.  Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12 , 1988, Journal of bacteriology.

[12]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[13]  R. Miller,et al.  One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[15]  M K Winson,et al.  Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. , 1998, FEMS microbiology letters.

[16]  H. Riezman,et al.  Transcription and translation initiation frequencies of the Escherichia coli lac operon. , 1977, Journal of molecular biology.

[17]  Ron Weiss,et al.  Cellular computation and communications using engineered genetic regulatory networks , 2001, Cellular Computing.

[18]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Ehrenberg,et al.  Control of rRNA Synthesis in Escherichia coli: a Systems Biology Approach , 2004, Microbiology and Molecular Biology Reviews.

[20]  F. Studier,et al.  T7 RNA polymerase directed expression of the Escherichia coli rrnB operon. , 1986, The EMBO journal.

[21]  A. Aertsen,et al.  N-acyl-L-homoserine lactone signal interception by Escherichia coli. , 2006, FEMS microbiology letters.

[22]  Robert H. Halstead,et al.  Computation structures , 1990, MIT electrical engineering and computer science series.

[23]  Jared R. Leadbetter,et al.  Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR , 2006, Nature Biotechnology.

[24]  Ron Weiss,et al.  Engineered Communications for Microbial Robotics , 2000, DNA Computing.

[25]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs , 1996, Journal of bacteriology.

[26]  R. Weiss,et al.  Directed evolution of a genetic circuit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Keasling,et al.  Effect of Escherichia coli biomass composition on central metabolic fluxes predicted by a stoichiometric model. , 1998, Biotechnology and bioengineering.

[28]  Smita S. Patel,et al.  Kinetic and thermodynamic basis of promoter strength: multiple steps of transcription initiation by T7 RNA polymerase are modulated by the promoter sequence. , 2002, Biochemistry.

[29]  W. Mcallister,et al.  Promoter specificity determinants of T7 RNA polymerase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Leibler,et al.  Biological rhythms: Circadian clocks limited by noise , 2000, Nature.

[31]  R. Goldberger Autogenous Regulation of Gene Expression , 1974, Science.

[32]  D. Endy Foundations for engineering biology , 2005, Nature.

[33]  X Zhang,et al.  Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme. , 1997, Journal of molecular biology.

[34]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[35]  W. Mcallister,et al.  Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. , 2000, Biochemistry.

[36]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[37]  J. Sadler,et al.  Plasmids containing many tandem copies of a synthetic lactose operator. , 1980, Gene.

[38]  A. Sonenshein,et al.  Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. , 1992, Journal of molecular biology.

[39]  A. Pomini,et al.  Acyl-homoserine lactones from Erwinia psidii R. IBSBF 435T, a guava phytopathogen (Psidium guajava L.). , 2005, Journal of agricultural and food chemistry.

[40]  M. Elowitz,et al.  Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J H Lamb,et al.  Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. , 1997, Microbiology.

[42]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[43]  G. Stephanopoulos,et al.  Tuning genetic control through promoter engineering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Itaya,et al.  Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[46]  B. Glick Metabolic load and heterologous gene expression. , 1995, Biotechnology advances.

[47]  R. Weiss,et al.  Programmed population control by cell–cell communication and regulated killing , 2004, Nature.

[48]  M. Nomura Engineering of bacterial ribosomes: replacement of all seven Escherichia coli rRNA operons by a single plasmid-encoded operon. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Jan van Duin,et al.  Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. , 2003 .

[50]  F. Studier,et al.  Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. , 1991, Journal of molecular biology.

[51]  K. Nealson Autoinduction of bacterial luciferase , 1977, Archives of Microbiology.

[52]  E. Greenberg,et al.  Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. , 1996, Annual review of microbiology.

[53]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[54]  A. C. Chang,et al.  Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid , 1978, Journal of bacteriology.

[55]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[56]  M. Casadaban,et al.  Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. , 1976, Journal of molecular biology.

[57]  C. Condon,et al.  Construction and Initial Characterization of Escherichia coli Strains with Few or No Intact Chromosomal rRNA Operons , 1999, Journal of bacteriology.

[58]  A. Arkin,et al.  Fast, cheap and somewhat in control , 2006, Genome Biology.

[59]  H. D. de Boer,et al.  Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[61]  F. Studier,et al.  Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. , 1991, Journal of molecular biology.

[62]  S. Cohen,et al.  Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. , 1980, Journal of molecular biology.

[63]  M. Chamberlin,et al.  New RNA Polymerase from Escherichia coli infected with Bacteriophage T7 , 1970, Nature.

[64]  E. Makarov,et al.  Transcribing of Escherichia coli genes with mutant T7 RNA polymerases: stability of lacZ mRNA inversely correlates with polymerase speed. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Ian Robertson Sinclair,et al.  Sensors and Transducers , 1988 .

[66]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[67]  M. Savageau Comparison of classical and autogenous systems of regulation in inducible operons , 1974, Nature.

[68]  B. Müller-Hill,et al.  The three operators of the lac operon cooperate in repression. , 1990, The EMBO journal.

[69]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[70]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[71]  C. Martin,et al.  Thermodynamic and kinetic measurements of promoter binding by T7 RNA polymerase. , 1996, Biochemistry.

[72]  N. Daraselia,et al.  NOMAD: a versatile strategy for in vitro DNA manipulation applied to promoter analysis and vector design. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[73]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[74]  M. Sørensen,et al.  Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. , 1993, Journal of molecular biology.

[75]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[76]  K. Jensen,et al.  The RNA chain elongation rate in Escherichia coli depends on the growth rate , 1994, Journal of bacteriology.

[77]  J. Steitz,et al.  How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[78]  K. Nealson,et al.  Bacterial bioluminescence: its control and ecological significance , 1979, Microbiological reviews.

[79]  M. Smit,et al.  Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. , 1990 .

[80]  A. Jacobson,et al.  Metabolic Events Occurring During Recovery from Prolonged Glucose Starvation in Escherichia coli , 1968, Journal of bacteriology.

[81]  N. Lee,et al.  Mechanism of araC autoregulation and the domains of two overlapping promoters, Pc and PBAD, in the L-arabinose regulatory region of Escherichia coli. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Thomas F Knight Engineering novel life , 2005, Molecular systems biology.

[83]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[84]  R. Rauhut,et al.  mRNA degradation in bacteria. , 1999, FEMS microbiology reviews.

[85]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[86]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[87]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[88]  U. Alon,et al.  Plasticity of the cis-Regulatory Input Function of a Gene , 2006, PLoS biology.

[89]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Thomas F. Knight,et al.  Idempotent Vector Design for Standard Assembly of Biobricks , 2003 .

[91]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[92]  C. Yanisch-Perron,et al.  Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. , 1985, Gene.

[93]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[94]  M. Elowitz,et al.  Combinatorial Synthesis of Genetic Networks , 2002, Science.

[95]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[96]  J E Bailey,et al.  Simulations of host–plasmid interactions in Escherichia coli: Copy number, promoter strength, and ribosome binding site strength effects on metabolic activity and plasmid gene expression , 1987, Biotechnology and bioengineering.