Acceleration techniques for discrete-ordinates transport methods with highly forward-peaked scattering

In this dissertation, advanced numerical methods for highly forward peaked scattering deterministic calculations are devised, implemented, and assessed. Since electrons interact with the surrounding environment through Coulomb interactions, the scattering kernel is highly forward-peaked. This bears the consequence that, with standard preconditioning, the standard Legendre expansion of the scattering kernel requires too many terms for the discretized equation to be solved efficiently using a deterministic method. The Diffusion Synthetic Acceleration (DSA), usually used to speed up the calculation when the scattering is weakly anisotropic, is inefficient for electron transport. This led Morel and Manteuffel to develop an one-dimensional angular multigrid (ANMG) which has proved to be very effective when the scattering is highly anisotropic. Later, Pautz et al. generalized this scheme to multidimensional geometries, but this method had to be stabilized by a diffusive filter that degrades the overall convergence of the iterative scheme. In this dissertation, we recast the multidimensional angular multigrid method without the filter as a preconditioner for a Krylov solver. This new method is stable independently of the anisotropy of the scattering and is increasingly more effective and efficient as the anisotropy increases compared to DSA preconditioning wrapped inside a Krylov solver. At the coarsest level of ANMG, a DSA step is needed. In this research, we use the Modified Interior Penalty (MIP) DSA. This DSA was shown to be always stable on triangular cells with isotropic scattering. Because this DSA discretization leads to symmetric definite-positive matrices, it is usually solved using a conjugate gradient preconditioned (CG) by SSOR but here, we show that algebraic multigrid methods are vastly superior than more common CG preconditioners such as SSOR.

[1]  Radim Blaheta,et al.  GPCG–generalized preconditioned CG method and its use with non‐linear and non‐symmetric displacement decomposition preconditioners , 2002, Numer. Linear Algebra Appl..

[2]  Jim E. Morel,et al.  A Hybrid Collocation-Galerkin-Sn Method for Solving the Boltzmann Transport Equation , 1989 .

[3]  Edward W. Larsen,et al.  Diffusion-synthetic acceleration methods for discrete-ordinates problems , 1984 .

[4]  Jim E. Morel,et al.  Spatial Finite-Element Lumping Techniques for the Quadrilateral Mesh Sn Equations in X-Y Geometry , 2007 .

[5]  Martin Schulz,et al.  On the Performance of an Algebraic Multigrid Solver on Multicore Clusters , 2010, VECPAR.

[6]  A Heterogeneous Coarse Mesh Method for Coupled Photon Electron Transport Problems , 2011 .

[7]  Michael C. Ferris,et al.  Optimizing the Delivery of Radiation Therapy to Cancer Patients , 1999, SIAM Rev..

[8]  H. Khalil,et al.  A nodal diffusion technique for synthetic acceleration of nodal S /SUB n/ calculations , 1985 .

[9]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[10]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[11]  Robert D. Falgout,et al.  Multigrid Smoothers for Ultraparallel Computing , 2011, SIAM J. Sci. Comput..

[12]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[13]  Shawn D. Pautz,et al.  Discontinuous Finite Element SN Methods on Three-Dimensional Unstructured Grids , 2001 .

[14]  Luke N. Olson,et al.  Exposing Fine-Grained Parallelism in Algebraic Multigrid Methods , 2012, SIAM J. Sci. Comput..

[15]  Yaqi Wang Adaptive mesh refinement solution techniques for the multigroup SN transport equation using a higher-order discontinuous finite element method , 2010 .

[16]  Jean C. Ragusa,et al.  On the Construction of Galerkin Angular Quadratures , 2011 .

[17]  Firas Mourtada,et al.  Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams , 2010, Physics in medicine and biology.

[18]  Bruce W. Patton,et al.  Application of preconditioned GMRES to the numerical solution of the neutron transport equation , 2002 .

[19]  J. Deasy Multiple local minima in radiotherapy optimization problems with dose-volume constraints. , 1997, Medical physics.

[20]  Jim E. Morel,et al.  Angular Fokker-Planck decomposition and representation techniques , 1989 .

[21]  Teresa S. Bailey The piecewise linear discontinuous finite element method applied to the RZ and XYZ transport equations , 2008 .

[22]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[23]  A. Ahnesjö,et al.  A pencil beam model for photon dose calculation. , 1992, Medical physics.

[24]  Achi Brandt,et al.  Textbook multigrid efficiency for fluid simulations , 2003 .

[25]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[26]  K. Przybylski,et al.  Numerical analysis of the Boltzmann equation including Fokker-Planck terms , 1982 .

[27]  Edward W. Larsen,et al.  The linear Boltzmann equation in optically thick systems with forward-peaked scattering , 1999 .

[28]  Marvin L. Adams,et al.  Diffusion-synthetic acceleration given anisotropic scattering, general quadratures, and multidimensions , 1993 .

[29]  Jim E. Morel,et al.  Krylov Iterative Methods and the Degraded Effectiveness of Diffusion Synthetic Acceleration for Multidimensional SN Calculations in Problems with Material Discontinuities , 2004 .

[30]  Yaqi Wang,et al.  Standard and goal-oriented adaptive mesh refinement applied to radiation transport on 2D unstructured triangular meshes , 2011, J. Comput. Phys..

[31]  Jean C. Ragusa,et al.  Diffusion Synthetic Acceleration for High-Order Discontinuous Finite Element SN Transport Schemes and Application to Locally Refined Unstructured Meshes , 2010 .

[32]  Gene H. Golub,et al.  Matrix computations , 1983 .

[33]  Suely Oliveira,et al.  Preconditioned Krylov subspace methods for transport equations , 1998 .

[34]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[35]  S Marzi,et al.  Optimization of intensity modulated radiation therapy: assessing the complexity of the problem. , 2001, Annali dell'Istituto superiore di sanita.

[36]  Gene H. Golub,et al.  Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration , 1999, SIAM J. Sci. Comput..

[37]  Ray S. Tuminaro,et al.  Parallel Smoothed Aggregation Multigrid : Aggregation Strategies on Massively Parallel Machines , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[38]  R. Baker A Block Adaptive Mesh Refinement Algorithm for the Neutral Particle Transport Equation , 2002 .

[39]  K. D. Lathrop Anisotropic Scattering Approximations in the Monoenergetic Boltzmann Equation , 1965 .

[40]  Todd S. Palmer Discretizing the diffusion equation on unstructured polygonal meshes in two dimensions , 2001 .

[41]  T. A. Manteuffel,et al.  An Angular Multigrid Acceleration Technique for Sn Equations with Highly Forward-Peaked Scattering , 1991 .

[42]  W. Marsden I and J , 2012 .

[43]  J. Morel,et al.  Coupled Electron-Photon Transport Calculations Using the Method of Discrete Ordinates , 1985, IEEE Transactions on Nuclear Science.

[44]  Jim E. Morel,et al.  A Hybrid Multigroup/Continuous-Energy Monte Carlo Method for Solving the Boltzmann-Fokker-Planck Equation , 1996 .

[45]  P. Colella,et al.  An Adaptive Mesh Refinement Algorithm for the Radiative Transport Equation , 1998 .

[46]  Marvin L. Adams,et al.  A PIECEWISE LINEAR FINITE ELEMENT BASIS WITH APPLICATION TO PARTICLE TRANSPORT , 2003 .

[47]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[48]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[49]  Mark T. Jones,et al.  A Parallel Graph Coloring Heuristic , 1993, SIAM J. Sci. Comput..

[50]  James S. Warsa,et al.  A Continuous Finite Element-Based, Discontinuous Finite Element Method for SN Transport , 2008 .

[51]  G. Bal,et al.  Discrete ordinates methods in xy geometry with spatially varying angular discretization , 1997 .

[52]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[53]  T. S. Palmer A point-centered diffusion differencing for unstructured meshes in 3-D , 1994 .

[54]  G. C. Pomraning THE FOKKER-PLANCK OPERATOR AS AN ASYMPTOTIC LIMIT , 1992 .

[55]  Jim E. Morel,et al.  Fully Consistent Diffusion Synthetic Acceleration of Linear Discontinuous SN Transport Discretizations on Unstructured Tetrahedral Meshes , 2002 .

[56]  J. Lydon,et al.  Photon dose calculations in homogeneous media for a treatment planning system using a collapsed cone superposition convolution algorithm. , 1998, Physics in medicine and biology.

[57]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[58]  Q. Hou,et al.  An optimization algorithm for intensity modulated radiotherapy--the simulated dynamics with dose-volume constraints. , 2002, Medical physics.

[59]  Edward W. Larsen,et al.  Fokker-Planck approximation of monoenergetic transport processes , 1994 .

[60]  J. Seco,et al.  Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine , 2005, Physics in medicine and biology.

[61]  Yvan Notay Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..

[62]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[63]  Yvan Notay,et al.  Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..

[64]  Marvin L. Adams,et al.  Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems , 2001 .

[65]  Jean C. Ragusa,et al.  On the Convergence of DGFEM Applied to the Discrete Ordinates Transport Equation for Structured and Unstructured Triangular Meshes , 2009 .

[66]  W. H. Reed,et al.  Spherical Harmonic Solutions of the Neutron Transport Equation from Discrete Ordinate Codes , 1972 .

[67]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[68]  T. A. Manteuffel,et al.  A look at transport theory from the point of view of linear algebra , 1988 .

[69]  Jim E. Morel,et al.  A Transport Acceleration Scheme for Multigroup Discrete Ordinates with Upscattering , 2010 .

[70]  J. Morel On the Validity of the Extended Transport Cross-Section Correction for Low-Energy Electron Transport , 1979 .

[71]  G. C. Pomraning,et al.  The Pencil Beam Problem for Screened Rutherford Scattering , 1998 .

[72]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[73]  K. Stüben A review of algebraic multigrid , 2001 .

[74]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[75]  Edward W. Larsen,et al.  Fast iterative methods for discrete-ordinates particle transport calculations , 2002 .

[76]  T. S. Bailey,et al.  A Piecewise Bi-Linear Discontinuous Finite Element Spatial Discretization of the Sn Transport Equation , 2010 .

[77]  T Knöös,et al.  Limitations of a pencil beam approach to photon dose calculations in lung tissue. , 1995, Physics in medicine and biology.

[78]  Marian Brezina,et al.  Algebraic Multigrid on Unstructured Meshes , 1994 .

[79]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[80]  Jim E. Morel,et al.  Fokker-Planck calculations using standard discrete-ordinates transport codes , 1981 .

[81]  Edward W. Larsen,et al.  UNCONDITIONALLY STABLE DIFFUSION-SYNTHETIC ACCELERATION METHODS FOR THE SLAB GEOMETRY DISCRETE ORDINATES EQUATIONS. PART I: THEORY. , 1982 .

[82]  T. Krieger,et al.  Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom , 2005, Physics in medicine and biology.

[83]  Shawn D. Pautz,et al.  An Asymptotic Study of Discretized Transport Equations in the Fokker-Planck Limit , 2002 .

[84]  Marvin L. Adams,et al.  A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids , 2008, J. Comput. Phys..