Mechnical properties of NiAl–Cr alloys in relation to microstructure and atomic defects

Abstract The quasi-binary eutectic NiAl–Cr of the ternary Ni–Al–Cr system is composed of B2 type NiAl(Cr) solid solutions and the b.c.c. transition metal chromium as second phase. This constitution enables a systematic alloy design in dependence on the Cr content for improving elastic stiffness, high temperature strength, creep resistance, and fracture toughness of intermetallic NiAl. Elasticity and mechanical properties of NiAl(Cr) reinforced by nano-sized Cr particles or quasi-continuous Cr fibres of several microns in diameter are presented and discussed in respect to single phase NiAl and literature data. The microstructural characterization and discussion of mechanical properties of NiAl–Cr alloys are supplemented by atom probe field ion microscopy analysis (APFIM). APFIM was used to determine the atomic defect structures, the Cr site preference and reveals Cr segregations at antiphase boundaries.

[1]  R. Fischer,et al.  APFIM investigations on site preferences, superdislocations, and antiphase boundaries in NiAl(Cr) with B2 superlattice structure , 2003 .

[2]  M. Palm,et al.  Production-scale processing of a new intermetallic NiAl–Ta–Cr alloy for high-temperature application: Part I. Production of master alloy remelt ingots and investment casting of combustor liner model panels , 2003 .

[3]  M. Palm,et al.  Production scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application. Part II. Powder metallurgical production of bolts by hot isostatic pressing , 2003 .

[4]  G. Frommeyer,et al.  Determination of the constitution of the quasi–binary eutectic NiAl–Re system by DTA and microstructural investigations , 2003 .

[5]  P. Sahm,et al.  Nickel aluminides: a step toward industrial application , 2002 .

[6]  S. Raj,et al.  Elevated temperature strength and room-temperature toughness of directionally solidified Ni-33Al-33Cr-1Mo , 2002 .

[7]  R. Fischer,et al.  Atom Probe Field Ion Microscopy Investigations on Antiphase Boundaries and Super Dislocations in NiAl Alloyed with Chromium , 2001 .

[8]  C. Herzig,et al.  Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition , 2001 .

[9]  E. Arzt,et al.  Elevated temperature compressive strength properties of oxide dispersion strengthened NiAl after cryomilling and roasting in nitrogen , 2000 .

[10]  H. Grabke Oxidation of NiAl and FeAl , 1999 .

[11]  Y. Chang,et al.  Thermodynamic properties of the Ni–Al–Cr system , 1999 .

[12]  R. Noebe,et al.  Elevated temperature compressive slow strain rate properties of several directionally solidified NiAl–(Nb,Mo) alloys , 1999 .

[13]  G. Sauthoff,et al.  The effect of martensite formation on the mechanical behaviour of NiAl , 1999 .

[14]  H. Vehoff,et al.  Study of the fracture behavior in soft and hard oriented NiAl single crystals by AFM , 1999 .

[15]  F. Ernst,et al.  Micromechanisms of fracture in NiAl studied by in situ straining experiments in an HVEM , 1999 .

[16]  W. Tian,et al.  Precipitation of α-Cr in B2-ordered NiAl , 1999 .

[17]  A. Freeman,et al.  Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl , 1998 .

[18]  W. Nix,et al.  Atomic size effects in Ni–Al based solid solutions , 1998 .

[19]  M. Crimp,et al.  Study of dislocations in NiAl through the use of in-situ straining in transmission electron microscopy , 1997 .

[20]  G. Frommeyer,et al.  Equation of state of polycrystalline Ni_50Al_50 , 1997 .

[21]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[22]  W. Nix,et al.  High- temperature deformation properties of nial single crystals , 1996 .

[23]  R. Noebe,et al.  Physical and mechanical metallurgy of NiAl , 1996 .

[24]  V. Sikka,et al.  Physical Metallurgy and processing of Intermetallic Compounds , 1995 .

[25]  H. Vehoff,et al.  Investigations of loaded crack tips in NiAl by atomic force microscopy , 1995 .

[26]  D. R. Johnson,et al.  Deformation and fracture of a directionally solidified NiAl–28Cr–6Mo eutectic alloy , 1995 .

[27]  G. Sauthoff,et al.  Mechanical properties and high-temperature deformation behaviour of particle-strengthened NiAl alloys , 1995 .

[28]  H. Vehoff,et al.  Effect of environment on the brittle-to-ductile transition of pre-cracked NiAl single and polycrystals , 1995 .

[29]  A. Fox Low-angle structure factors, debye temperature and charge density of NiAl: A reconciliation between experiment and first principles full potential linear augmented plane wave (FLAPW) calculations in the local density approximation , 1995 .

[30]  Tomoo Suzuki,et al.  Thermal conductivity of B2-type aluminides and titanides , 1995 .

[31]  D. R. Johnson,et al.  Processing and mechanical properties of in-situ composites from the NiAlCr and the NiAl(Cr,Mo) eutectic systems , 1995 .

[32]  Shojiro Ochiai,et al.  Mechanical Properties of Metallic Composites , 1993 .

[33]  D. Miracle Overview No. 104 The physical and mechanical properties of NiAl , 1993 .

[34]  M. Kaufman,et al.  The effects of chromium on NiAl intermetallic alloys: Part I. microstructures and mechanical properties , 1993 .

[35]  M. Kaufman,et al.  The effects of chromium on NiAl intermetallic alloys: Part II. Slip systems , 1993 .

[36]  S. Raj,et al.  Correlation of deformation mechanisms with the tensile and compressive behavior of NiAl and NiAl(Zr) intermetallic alloys , 1992 .

[37]  M. Yoo,et al.  Deformation behavior of B2 type aluminides: FeAl and NiAl , 1992 .

[38]  R. Field,et al.  The effect of alloying on slip systems in 〈001〉 oriented NiAl single crystals , 1991 .

[39]  M. Kaufman,et al.  Constitution of pseudobinary hypoeutectic β-NiAl + α-V alloys , 1991 .

[40]  Hong,et al.  Effect of antiphase boundaries on the electronic structure and bonding character of intermetallic systems: NiAl. , 1991, Physical review. B, Condensed matter.

[41]  G. Sauthoff Intermetallic Alloys - Overview on New Materials Developments for Structural Applications in West Germany , 2010 .

[42]  J. Whittenberger,et al.  Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300K , 1990 .

[43]  D. V. Aken,et al.  Studies of a Quasi-binary Β-NiAl and Α-Re Eutectic , 1989 .

[44]  O. Sherby,et al.  On constitutive equations for various diffusion-controlled creep mechanisms , 1988 .

[45]  J. Whittenberger Effect of composition and grain size on slow plastic flow properties of NiAl between 1200 and 1400 K , 1987 .

[46]  C. T. Liu,et al.  High-temperature ordered intermetallic alloys , 1985 .

[47]  M. Notis,et al.  A review: Constitution of the AlCrNi system , 1984 .

[48]  P. Georgopoulos,et al.  The defect arrangement in (non-stoichiometric) β′-NiAl , 1981 .

[49]  H. Warlimont,et al.  Young's modulus of β2‐NiAl alloys , 1979 .

[50]  H. Warlimont,et al.  The elastic behaviour of β2-NiAl alloys , 1977 .

[51]  W. McFall,et al.  Isotope effect in chromium self-diffusion , 1976 .

[52]  B. Mordike,et al.  Slip Geometry of Tantalum and Tantalum Alloys , 1975 .

[53]  H. Fraser,et al.  Annealing of point defects in quenched NiAl , 1975 .

[54]  T. Paakkari A determination of the Debye–Waller temperature factor and the X‐ray Debye temperature for Ni, Cr, Fe, Mo and W , 1974 .

[55]  M. Loretto,et al.  The plastic deformation of NiAl single crystals between 300°K and 1050°K: I. Experimental evidence on the role of kinking and uniform deformation in crystals compressed along ⟨001⟩ , 1973 .

[56]  H. Cline,et al.  Stability of the directionally solidified eutectics NiAl-Cr and NiAl-Mo , 1973 .

[57]  H. Jacobi,et al.  Defect structure in non-stoichiometric β-(Ni, Cu)Al , 1971 .

[58]  G. F. Hancock,et al.  Diffusion in the intermetallic compound NiAl , 1971 .

[59]  B. Vassos,et al.  Electrical properties of β-phase NiAl , 1969 .

[60]  A. Ball,et al.  Vacancy defects in the ordered compound NiAl , 1968 .

[61]  J. W. Wilson,et al.  Behaviour and Properties of Refractory Metals , 1965 .

[62]  M. J. Cooper An investigation of the ordering of the phases CoAl and NiAl , 1963 .