Hydrodynamics of a DNA molecule in a flow field

The behavior of dilute flexible polymer molecules in flowing liquids remains controversial, despite a long history of experimental and theoretical study. The simplest theory, introduced by Kuhn [1] some 60 years ago, treats the polymer as an elastic “dumbbell” in which an elastic spring connects two “beads” onto which are lumped the viscous drag forces that in reality act along the entire chain. In the simplest version of the dumbbell model, the drag force F d on each bead is given by Stokes law, F d = ςk B TV, where V is the velocity of the solvent relative to that of the bead, and the drag coefficient ςk B T is independent of the deformation of the molecule.

[1]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[2]  N. Phan-Thien,et al.  A study of conformation-dependent friction in a dumbbell model for dilute solutions , 1984 .

[3]  A. Peterlin Hydrodynamics of linear macromolecules , 1966 .

[4]  Françoise Brochard-Wyart,et al.  Deformations of One Tethered Chain in Strong Flows , 1993 .

[5]  S. Muller,et al.  Rheology, Flow Instabilities, and Shear-Induced Diffusion in Polystyrene Solutions , 1993 .

[6]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[7]  L. G. Leal,et al.  Dilute polystyrene solutions in extensional flows: Birefringence and flow modification , 1987 .

[8]  R. Pecora,et al.  DNA: a model compound for solution studies of macromolecules , 1991, Science.

[9]  R. Cerf Sur la théorie des propriétés hydrodynamiques des solutions de macromolécules en chaines , 1969 .

[10]  R. Larson,et al.  Stretching of a single tethered polymer in a uniform flow. , 1995, Science.

[11]  G. Ryskin Calculation of the effect of polymer additive in a converging flow , 1987, Journal of Fluid Mechanics.

[12]  H. C. Öttinger Generalized Zimm model for dilute polymer solutions under theta conditions , 1987 .

[13]  Thomas T. Perkins,et al.  Dynamical scaling of DNA diffusion coefficients , 1996 .

[14]  D. F. James,et al.  Analysis of the Rouse model in extensional flow. II. Stresses generated in sink flow by flexible macromolecules and by finitely extended macromolecules , 1983 .

[15]  P. Gennes Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients , 1974 .

[16]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[17]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[18]  D E Smith,et al.  Direct observation of tube-like motion of a single polymer chain. , 1994, Science.

[19]  E. J. Hinch,et al.  Mechanical models of dilute polymer solutions in strong flows , 1977 .

[20]  A. Vologodskii DNA Extension under the Action of an External Force , 1994 .

[21]  Conformational changes of macromolecules in transient elongational flow , 1980 .

[22]  R. Larson,et al.  Deformation-dependent hydrodynamic interaction in flows of dilute polymer solutions , 1988 .

[23]  F. Brochard-Wyart,et al.  Polymer Chains Under Strong Flow: Stems and Flowers , 1995, Turkish Journal of Physics.

[24]  W. Kuhn,et al.  Über die Gestalt fadenförmiger Moleküle in Lösungen , 1934 .

[25]  A. Mchugh,et al.  A discussion of shear-thickening in bead-spring models , 1990 .

[26]  M. Fixman Polymer dynamics: boson representation and excluded-volume forces. , 1966, The Journal of chemical physics.

[27]  R. Pecora,et al.  Rotational and translational diffusion of short rodlike molecules in solution: Oligonucleotides , 1991 .

[28]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[29]  R. Larson,et al.  Coil–Stretch Transitions in Mixed Shear and Extensional Flows of Dilute Polymer Solutions , 1989 .