Virtual Time-Inverse OFDM Underwater Acoustic Channel Estimation Algorithm Based on Compressed Sensing

The severe multipath delay of the underwater acoustic channel, the Doppler shift, the severe time-varying characteristics, and sparsity make it difficult to obtain the channel state information in the channel estimation of the virtual time-reverse mirror OFDM, which makes the virtual time mirror subcarrier orthogonality easy to suffer damage; the focusing effect is not obvious. Therefore, this paper proposes a virtual time-inverse OFDM underwater acoustic channel estimation algorithm based on compressed sensing. The algorithm extracts the detection signal, constructs a sparse signal model of the delay-Doppler shift, and then performs preestimation of the underwater acoustic channel based on the compressed sensing theory. Then, by predicting the timing of the underwater acoustic channel and convolving with the received signal, the algorithm improves the focusing effect better. Experimental simulations show that compared with LS and OMP algorithms, the algorithm can accurately recover channel information from a small number of observations, reduce the bit error rate by 10%, and improve the accuracy of channel estimation and the time-inverse OFDM performance of virtual time.