Design and prediction of metal organic framework-based mixed matrix membranes for CO2 capture via machine learning

[1]  Lijun Du,et al.  An Aromatic Fluoropolymer For Hydrogen Separation From Hydrocarbons. , 2022, Macromolecular rapid communications.

[2]  Xiaonan Wang,et al.  Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening , 2021 .

[3]  E. Benhelal,et al.  Challenges against CO2 abatement strategies in cement industry: A review. , 2021, Journal of environmental sciences.

[4]  Jixiao Wang,et al.  High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities , 2021 .

[5]  Purna Chandra Rao,et al.  Recent advances in process engineering and upcoming applications of metal–organic frameworks , 2020, Coordination Chemistry Reviews.

[6]  Sui Zhang,et al.  Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning , 2020 .

[7]  Huaiguo Xue,et al.  Metal–organic frameworks as a platform for clean energy applications , 2020 .

[8]  Qi Wang,et al.  State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. , 2020, Chemical reviews.

[9]  Meng Zhao,et al.  Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes , 2020, Frontiers of Chemical Science and Engineering.

[10]  Wei-keng Liao,et al.  Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning , 2019, Nature Communications.

[11]  Chongli Zhong,et al.  Mixed-matrix membranes for CO2 separation: role of the third component , 2019, Journal of Materials Chemistry A.

[12]  Y. Koyama,et al.  Predicting Materials Properties with Little Data Using Shotgun Transfer Learning , 2019, ACS central science.

[13]  O. Voznyy,et al.  Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. , 2019, ACS nano.

[14]  Wei Zhou,et al.  Porous metal-organic frameworks for gas storage and separation: Status and challenges. , 2019, EnergyChem.

[15]  V. Venkatasubramanian The promise of artificial intelligence in chemical engineering: Is it here, finally? , 2018, AIChE Journal.

[16]  Allison C Hinckley,et al.  Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal-Organic Framework. , 2018, Journal of the American Chemical Society.

[17]  Xianhui Bu,et al.  Metal–Organic Frameworks for Separation , 2018, Advanced materials.

[18]  Zhongde Dai,et al.  Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review , 2018, Membranes.

[19]  M. G. Ahunbay,et al.  Highly CO2 Selective Microporous Metal-Imidazolate Framework-Based Mixed Matrix Membranes. , 2017, ACS applied materials & interfaces.

[20]  B. Freeman,et al.  Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1) , 2017 .

[21]  Christopher A. Trickett,et al.  The chemistry of metal–organic frameworks for CO 2 capture, regeneration and conversion , 2017 .

[22]  Yuguang Ma,et al.  CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. , 2017, Chemical reviews.

[23]  Lin Hao,et al.  Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance , 2015 .

[24]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[25]  Zu-Jin Lin,et al.  Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. , 2014, Chemical Society reviews.

[26]  V. Chen,et al.  Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .

[27]  C. Janiak,et al.  Metal-organic frameworks in mixed-matrix membranes for gas separation. , 2012, Dalton transactions.

[28]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[29]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[30]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[31]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[32]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[33]  L. Robeson,et al.  The upper bound revisited , 2008 .

[34]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[35]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[36]  W. Koros,et al.  Hybrid membrane materials comprising organic polymers with rigid dispersed phases , 2004 .

[37]  P. Tin,et al.  Effects of cross-linking modification on gas separation performance of Matrimid membranes , 2003 .

[38]  Rajiv Mahajan,et al.  Mixed matrix membrane materials with glassy polymers. Part 1 , 2002 .

[39]  Rajiv Mahajan,et al.  Mixed matrix membrane materials with glassy polymers. Part 2 , 2002 .

[40]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[41]  M. Schubert,et al.  Infrared optical properties of mixed-phase thin films studied by spectroscopic ellipsometry using boron nitride as an example , 1997 .

[42]  E. Cussler Membranes containing selective flakes , 1990 .

[43]  Lawrence E. Nielsen,et al.  Thermal conductivity of particulate-filled polymers , 1973 .

[44]  Lawrence E. Nielsen,et al.  Dynamic mechanical properties of particulate‐filled composites , 1970 .

[45]  Sui Zhang,et al.  A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels , 2021, Advanced Membranes.

[46]  Hailong Li,et al.  Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification , 2021 .

[47]  Jaka Sunarso,et al.  Current status and development of membranes for co2/CH4 separation: a review. , 2013 .

[48]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[49]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .