Discerning carnivore agency through the three-dimensional study of tooth pits: Revisiting crocodile feeding behaviour at FLK- Zinj and FLK NN3 (Olduvai Gorge, Tanzania)

[1]  Juan Francisco Palomeque-González,et al.  Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes , 2018, Archaeological and Anthropological Sciences.

[2]  J. Yravedra,et al.  The paleoecology and taphonomy of AMK (Bed I, Olduvai Gorge) and its contributions to the understanding of the “Zinj” paleolandscape , 2017 .

[3]  Diego González-Aguilera,et al.  A new approach to raw material use in the exploitation of animal carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): a micro‐photogrammetric and geometric morphometric analysis of fossil cut marks , 2017 .

[4]  Diego González-Aguilera,et al.  Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and micro‐photogrammetry , 2017, Journal of microscopy.

[5]  A. Sinclair,et al.  Beyond size: The potential of a geometric morphometric analysis of shape and form for the assessment of sex in hand stencils in rock art , 2017 .

[6]  Diego González-Aguilera,et al.  On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: The modern Olduvai Carnivore Site (Tanzania) , 2017 .

[7]  C. Lorenzo,et al.  Large carnivore attacks on hominins during the Pleistocene: a forensic approach with a Neanderthal example , 2016, Archaeological and Anthropological Sciences.

[8]  Diego González-Aguilera,et al.  Development of an All-Purpose Free Photogrammetric Tool , 2016 .

[9]  M. Moncel,et al.  Morphometric Assessment of Convergent Tool Technology and Function during the Early Middle Palaeolithic: The Case of Payre, France , 2016, PloS one.

[10]  Diego González-Aguilera,et al.  Micro-photogrammetric characterization of cut marks on bones , 2015 .

[11]  J. Yravedra,et al.  A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania) , 2015 .

[12]  A. Rodríguez-Hidalgo,et al.  Upper Palaeolithic ritualistic cannibalism at Gough's Cave (Somerset, UK): The human remains from head to toe. , 2015, Journal of human evolution.

[13]  C. Diedrich ‘Neanderthal bone flutes’: simply products of Ice Age spotted hyena scavenging activities on cave bear cubs in European cave bear dens , 2015, Royal Society Open Science.

[14]  M. Domínguez‐Rodrigo,et al.  The “Bear” Essentials: Actualistic Research on Ursus arctos arctos in the Spanish Pyrenees and Its Implications for Paleontology and Archaeology , 2014, PloS one.

[15]  J. Arsuaga,et al.  Taphonomic comparison of bone modifications caused by wild and captive wolves (Canis lupus) , 2014 .

[16]  J. Yravedra,et al.  First Partial Skeleton of a 1.34-Million-Year-Old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania , 2013, PloS one.

[17]  R. Sala,et al.  Homo vs. Pachycrocuta: Earliest evidence of competition for an elephant carcass between scavengers at Fuente Nueva-3 (Orce, Spain) , 2013 .

[18]  J. Yravedra,et al.  A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions , 2013 .

[19]  P. Gunz,et al.  The Mousterian child from Teshik-Tash is a Neanderthal: a geometric morphometric study of the frontal bone. , 2012, American journal of physical anthropology.

[20]  P. Gunz,et al.  Middle Pleistocene human facial morphology in an evolutionary and developmental context. , 2012, Journal of human evolution.

[21]  R. Blumenschine,et al.  Crocodylian and mammalian carnivore feeding traces on hominid fossils from FLK 22 and FLK NN 3, Plio-Pleistocene, Olduvai Gorge, Tanzania. , 2012, Journal of human evolution.

[22]  J. Jordá,et al.  Primeras ocupaciones en los depósitos pleistocenos de la Cueva de los Torrejones (Sistema Central español, Tamajón, Guadalajara): Litoestratigrafía y actividad biológica , 2012 .

[23]  E. Baquedano,et al.  An experimental study of large mammal bone modification by crocodiles and its bearing on the interpretation of crocodile predation at FLK Zinj and FLK NN3 , 2012 .

[24]  J. Yravedra,et al.  A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores , 2012, Archaeological and Anthropological Sciences.

[25]  C. Diedrich Cave bear killers and scavengers from the last ice age of central Europe: Feeding specializations in response to the absence of mammoth steppe fauna from mountainous regions , 2012 .

[26]  M. Hofreiter,et al.  Pleistocene bears in the Swabian Jura (Germany): Genetic replacement, ecological displacement, extinctions and survival , 2011 .

[27]  C. Klingenberg MorphoJ: an integrated software package for geometric morphometrics , 2011, Molecular ecology resources.

[28]  J. Yravedra,et al.  Disentangling hominin and carnivore activities near a spring at FLK North (Olduvai Gorge, Tanzania) , 2010, Quaternary Research.

[29]  J. Yravedra,et al.  Cut marks on the Middle Pleistocene elephant carcass of Áridos 2 (Madrid, Spain) , 2010 .

[30]  E. Carbonell,et al.  The hunted hunter: the capture of a lion (Panthera leo fossilis) at the Gran Dolina site, Sierra de Atapuerca, Spain , 2010 .

[31]  Stephen J. Lycett,et al.  A comparative 3D geometric morphometric analysis of Victoria West cores: implications for the origins of Levallois technology , 2010 .

[32]  M. Collard,et al.  A geometric morphometrics-based assessment of blade shape differences among Paleoindian projectile point types from western North America , 2010 .

[33]  J. Hodgson,et al.  Pits and pitfalls: taxonomic variability and patterning in tooth mark dimensions , 2009 .

[34]  Christian Peter Klingenberg,et al.  Novelty and “Homology-free” Morphometrics: What’s in a Name? , 2008, Evolutionary Biology.

[35]  Christophe Soligo,et al.  A new method for the quantitative analysis of cutmark micromorphology , 2008 .

[36]  R. Coard Ascertaining an agent: using tooth pit data to determine the carnivore/s responsible for predation in cases of suspected big cat kills in an upland area of Britain , 2007 .

[37]  A. Rosas,et al.  Facial ontogeny in Neanderthals and modern humans , 2007, Proceedings of the Royal Society B: Biological Sciences.

[38]  F. d’Errico,et al.  Additional evidence for bone technology in the southern African Middle Stone Age. , 2007, Journal of human evolution.

[39]  R. Blumenschine,et al.  A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania. , 2006, Journal of human evolution.

[40]  C. Klingenberg,et al.  Distances and directions in multidimensional shape spaces: implications for morphometric applications. , 2005, Systematic biology.

[41]  E. Bruner Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. , 2004, Journal of human evolution.

[42]  P. O'higgins,et al.  Hominins do not share a common postnatal facial ontogenetic shape trajectory. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[43]  M. Domínguez‐Rodrigo,et al.  The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours , 2003 .

[44]  B. Hall Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution , 2003, Biological reviews of the Cambridge Philosophical Society.

[45]  S. Lele,et al.  The promise of geometric morphometrics. , 2002, American journal of physical anthropology.

[46]  N. H. Timm Applied Multivariate Analysis , 2002 .

[47]  J. Wilder,et al.  Identifying the Involvement of Multiple Carnivore Taxa with Archaeological Bone Assemblages , 2001 .

[48]  D. Slice Landmark coordinates aligned by procrustes analysis do not lie in Kendall's shape space. , 2001, Systematic biology.

[49]  F J Rohlf,et al.  Use of two-block partial least-squares to study covariation in shape. , 2000, Systematic biology.

[50]  F. Rohlf Shape Statistics: Procrustes Superimpositions and Tangent Spaces , 1999 .

[51]  P. O'higgins,et al.  Facial growth in Cercocebus torquatus: an application of three‐dimensional geometric morphometric techniques to the study of morphological variation , 1998, Journal of anatomy.

[52]  M. Blasco In the Pursuit of Game: The Mousterian Cave Site of Gabasa 1 in the Spanish Pyrenees , 1997, Journal of Anthropological Research.

[53]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[54]  F. Rohlf,et al.  A revolution morphometrics. , 1993, Trends in ecology & evolution.

[55]  G. Milner,et al.  Carnivore alteration of human bone from a late prehistoric site in Illinois. , 1989, American journal of physical anthropology.

[56]  Patricia Smith,et al.  The effects of striped hyaena activity on human remains , 1988 .

[57]  C. K. Brain The Hunters or the Hunted?: An Introduction to African Cave Taphonomy , 1983, Geological Magazine.

[58]  L. Straus,et al.  Carnivores and Cave Sites in Cantabrian Spain , 1982, Journal of Anthropological Research.

[59]  A. J. Sutcliffe,et al.  Spotted Hyaena: Crusher, Gnawer, Digester and Collector of Bones , 1970, Nature.

[60]  Stephen R. Merritt,et al.  A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. , 2017, Journal of human evolution.

[61]  Judith Charlin,et al.  Morfometría geométrica y representaciones rupestres: explorando las aplicaciones de los métodos basados en landmarks , 2016 .

[62]  E. Carbonell,et al.  Range of bone modifications by human chewing , 2013 .

[63]  F. Bárcena,et al.  The wild (canis lupus) as a dispersal agent of animal carcasses in Northwestern Spain , 2012 .

[64]  Silvia M. Bello,et al.  New Results from the Examination of Cut-Marks Using Three-Dimensional Imaging , 2011 .

[65]  F. Bárcena,et al.  A Taphonomic study of wild wolf (Canis lupus) Modification of horse bones in Northwestern Spain , 2011 .

[66]  T. Pickering,et al.  A multivariate approach for discriminating bone accumulations created by spotted Hyenas and Leopards: harnessing actualistic data from east and Southern Africa , 2010 .

[67]  J. Y. S. D. L. Terreros Aprovechamiento cárnico de lince (Lynx pardina) durante el Pleistoceno Superior en el interior de la Península Ibérica , 2005 .

[68]  Dennis E. Slice,et al.  Modern Morphometrics In Physical Anthropology , 2005 .

[69]  M. J. Valente Humans and Carnivores in the Early Upper Paleolithic in Portugal : Data from Pego do Diabo Cave , 2004 .

[70]  P. Auguste Chasse et charognage au Paléolithique moyen : l'apport du gisement de Biache-Saint-Vaast (Pas-de-Calais) , 1995 .

[71]  F. Bookstein Thin-plate splines and decomposition of deformation , 1989 .

[72]  L. Binford Bones: Ancient Men and Modern Myths , 1981 .

[73]  Pat Shipman,et al.  Life History of a Fossil: An Introduction to Taphonomy and Paleoecology , 1981 .

[74]  G. Haynes Bone modifications and skeletal disturbances by natural agencies : studies in North America , 1981 .