Aquarius L-band Radiometers Calibration Using Cold Sky Observations

An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180° from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

[1]  David M. Le Vine,et al.  Effects of the Antenna Aperture on Remote Sensing of Sea Surface Salinity at L-band. , 2007, 2006 IEEE MicroRad.

[2]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  David M. Le Vine,et al.  Impact of Antenna Pattern on Measurement of the Third Stokes Parameter From Space at L-Band , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Simone Pettinato,et al.  Ground-Based L-Band Emission Measurements at Dome-C Antarctica: The DOMEX-2 Experiment , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[6]  Emmanuel P. Dinnat,et al.  Aquarius: Status and recent results , 2014 .

[7]  David M. Le Vine,et al.  The Aquarius Simulator and Cold-Sky Calibration , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[9]  Niels Skou,et al.  The airborne EMIRAD L-band radiometer system , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[10]  Jacqueline Boutin,et al.  Active‐passive synergy for interpreting ocean L‐band emissivity: Results from the CAROLS airborne campaigns , 2014 .

[11]  Jacqueline Boutin,et al.  Issues concerning the sea emissivity modeling at L band for retrieving surface salinity , 2003 .

[12]  Emmanuel P. Dinnat,et al.  Weekly Gridded Aquarius L-band Radiometer-Scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 2: Initial Product Analysis , 2014 .

[13]  David M. Le Vine,et al.  Aquarius and Remote Sensing of Sea Surface Salinity from Space , 2010, Proceedings of the IEEE.

[14]  David M. Le Vine,et al.  Impact of Sun Glint on Salinity Remote Sensing: An Example With the Aquarius Radiometer , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[16]  Jacqueline Boutin,et al.  Inter-comparison of SMOS and aquarius Sea Surface Salinity: Effects of the dielectric constant and vicarious calibration , 2014, 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[17]  Thomas J. Jackson,et al.  Global Soil Moisture From the Aquarius/SAC-D Satellite: Description and Initial Assessment , 2015, IEEE Geoscience and Remote Sensing Letters.

[18]  A. Fung,et al.  The recovery of polarized apparent temperature distributions of flat scenes from antenna temperature measurements , 1974 .

[19]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.

[20]  Adriano Camps,et al.  SMOS and Aquarius Radiometers: Inter-Comparison Over Selected Targets , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  Valéry Masson,et al.  ECOCLIMAP: a global database of land surface parameters at 1 km resolution , 2005 .

[22]  D. M. Le Vine,et al.  Comparison of Aquarius measurements and radiative transfer models at L-band , 2012, 2012 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[23]  J. Boutin,et al.  Comparison of SMOS and Aquarius Sea Surface Salinity and analysis of possible causes for the differences , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[24]  A. Fung,et al.  Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications , 1986 .

[25]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[26]  Seung-Bum Kim,et al.  Effects of Antenna Cross-Polarization Coupling on the Brightness Temperature Retrieval at L-Band , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Thomas Meissner,et al.  The emission and scattering of L‐band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor , 2014 .

[28]  Emmanuel P. Dinnat,et al.  Effect of Snow Surface Metamorphism on Aquarius L-Band Radiometer Observations at Dome C, Antarctica , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Simon Yueh,et al.  The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge , 2008 .

[30]  Simon Yueh,et al.  The Aquarius Ocean Salinity Mission High Stability L-band Radiometer , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[31]  David M. Le Vine,et al.  Status of Aquarius/SAC-D and Aquarius Salinity Retrievals , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[32]  Jacqueline Boutin,et al.  Influence of sea surface emissivity model parameters at L-band for the estimation of salinity , 2002 .

[33]  Simon Yueh,et al.  Error sources and feasibility for microwave remote sensing of ocean surface salinity , 2001, IEEE Trans. Geosci. Remote. Sens..

[34]  Emmanuel P. Dinnat,et al.  Aquarius whole range calibration: Celestial Sky, ocean, and land targets , 2014, 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).