Linear rank statistics in regression analysis with censored or truncated data

A class of generalized linear rank statistics is introduced for regression analysis in the presence of truncation or censoring on the response variable. Applications of these statistics to hypothesis testing and estimation are discussed. Martingale theory and stochastic integrals of multiparameter empirical processes are applied to analyze the test statistics and the rank estimates.

[1]  Jana Jurečková,et al.  Asymptotic Linearity of a Rank Statistic in Regression Parameter , 1969 .

[2]  Niels Keiding,et al.  Random truncation models and Markov processes , 1990 .

[3]  K K Lan,et al.  Rank tests for survival analysis: a comparison by analogy with games. , 1985, Biometrics.

[4]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[5]  R. Prentice Linear rank tests with right censored data , 1978 .

[6]  P. Sen,et al.  Theory of rank tests , 1969 .

[7]  Zhiliang Ying,et al.  Large Sample Theory of a Modified Buckley-James Estimator for Regression Analysis with Censored Data , 1991 .

[8]  A. Tsiatis Estimating Regression Parameters Using Linear Rank Tests for Censored Data , 1990 .

[9]  何书元 ESTIMATING A DISTRIBUTION FUNCTION WITH TRUNCATED DATA , 1994 .

[10]  R. Gill Censoring and stochastic integrals , 1980 .

[11]  E. Lenglart,et al.  Relation de domination entre deux processus , 1977 .

[12]  Zhiliang Ying,et al.  Estimating a distribution function with truncated and censored data , 1991 .

[13]  M. Woodroofe Estimating a Distribution Function with Truncated Data , 1985 .

[14]  Arthur S. Goldberger,et al.  Linear regression after selection , 1981 .

[15]  Jack Cuzick,et al.  ASYMPTOTIC PROPERTIES OF CENSORED LINEAR RANK TESTS , 1985 .

[16]  Zhiliang Ying,et al.  Rank Regression Methods for Left-Truncated and Right-Censored Data , 1991 .

[17]  J. N. Adichie ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK TESTS , 1967 .

[18]  T. Lai,et al.  Stochastic integrals of empirical-type processes with applications to censored regression , 1988 .

[19]  Kwok-Leung Tsui,et al.  A Nonparametric Approach to the Truncated Regression Problem , 1988 .

[20]  Rolando Rebolledo,et al.  Central limit theorems for local martingales , 1980 .

[21]  Ramon Eduardo Rebolledo Ranz,et al.  Central limit theorems for local martingales , 1980 .

[22]  Herman Chernoff,et al.  Nonparametric Estimation of the Slope of a Truncated Regression , 1983 .

[23]  E. Gehan A GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES. , 1965, Biometrika.

[24]  I. Segal Observational validation of the chronometric cosmology: I. Preliminaries and the redshift-magnitude relation. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[25]  I. James,et al.  Linear regression with censored data , 1979 .