Mesh adaptive computation of upper and lower bounds in limit analysis

SUMMARY An efficient procedure to compute strict upper and lower bounds for the exact collapse multiplier in limit analysis is presented, with a formulation that explicitly considers the exact convex yield condition. The approach consists of two main steps. First, the continuous problem, under the form of the static principle of limit analysis, is discretized twice (one per bound) using particularly chosen finite element spaces for the stresses and velocities that guarantee the attainment of an upper or a lower bound. The second step consists of solving the resulting discrete non-linear optimization problems. These are reformulated as second-order cone programs, which allows for the use of primal–dual interior point methods that optimally exploit the convexity and duality properties of the limit analysis model. To benefit from the fact that collapse mechanisms are typically highly localized, a novel method for adaptive meshing is introduced. The method first decomposes the total bound gap as the sum of positive contributions from each element in the mesh and then refines those elements with higher contributions. The efficiency of the methodology is illustrated with applications in plane stress and plane strain problems. Copyright q 2008 John Wiley & Sons, Ltd.

[1]  Chris Martin,et al.  Upper bound limit analysis using simplex strain elements and second‐order cone programming , 2007 .

[2]  Raúl A. Feijóo,et al.  An adaptive approach to limit analysis , 2001 .

[3]  Michael L. Overton,et al.  An Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms , 2000, SIAM J. Sci. Comput..

[4]  E. Anderheggen,et al.  Finite element limit analysis using linear programming , 1972 .

[5]  J. Pastor,et al.  Mise en oeuvre numerique des methodes de l'analyse limite pour les materiaux de von mises et de Coulomb standards en deformation plane , 1976 .

[6]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[7]  Michele Capurso Limit analysis of continuous media with piecewise linear yeld condition , 1971 .

[8]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[9]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[10]  John Lysmer,et al.  LIMIT ANALYSIS OF PLANE PROBLEMS IN SOIL MECHANICS , 1970 .

[11]  Edmund Christiansen,et al.  Automatic mesh refinement in limit analysis , 1999 .

[12]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[13]  E. Christiansen Limit analysis of collapse states , 1996 .

[14]  Scott W. Sloan,et al.  Upper bound limit analysis using linear finite elements and non‐linear programming , 2001 .

[15]  Ted Belytschko,et al.  Plane Stress Limit Analysis by Finite Elements , 1970 .

[16]  E. Christiansen,et al.  Computation of the collapse state in limit analysis using the LP primal affine scaling algorithm , 1991 .

[17]  Héctor,et al.  Computation of upper and lower bounds in limit analysis using second-order cone programming and mesh adaptivity , 2004 .

[18]  Knud D. Andersen,et al.  Limit Analysis with the Dual Affine Scaling Algorithm , 1995 .

[19]  Knud D. Andersen,et al.  Minimizing a Sum of Norms Subject to Linear Equality Constraints , 1998, Comput. Optim. Appl..

[20]  C. Martin,et al.  Lower bound limit analysis of cohesive‐frictional materials using second‐order cone programming , 2006 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  J. C. Rice,et al.  On numerically accurate finite element solutions in the fully plastic range , 1990 .

[23]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .

[24]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[25]  Scott W. Sloan,et al.  Lower bound limit analysis using non‐linear programming , 2002 .

[26]  M. Overton,et al.  A New Primal-Dual Interior-Point Method for Semidefinite Programming , 1994 .

[27]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[28]  Scott W. Sloan,et al.  A new discontinuous upper bound limit analysis formulation , 2005 .

[29]  Knud D. Andersen,et al.  Computation of collapse states with von Mises type yield condition , 1998 .

[30]  G. Maier A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes , 1970 .

[31]  E. Christiansen Computation of limit loads , 1981 .

[32]  Michael L. Overton,et al.  Computing Limit Loads by Minimizing a Sum of Norms , 1998, SIAM J. Sci. Comput..

[33]  A. Makrodimopoulos,et al.  Computational formulation of shakedown analysis as a conic quadratic optimization problem , 2006 .