Modelling the Tunability of Early T Cell Signalling Events

The Tunable Activation Threshold hypothesis of T Cells is investigated through computational modelling of T cell signalling pathways. Modelling techniques involving the i¾?-calculus and the PRISM model checker are presented, and are applied to produce a stochastic model of T cell signalling. Initial results which demonstrate tuning of T cells are presented.

[1]  Ofer Feinerman,et al.  Quantitative challenges in understanding ligand discrimination by αβ T cells , 2008 .

[2]  Jonathan Timmis,et al.  An interdisciplinary perspective on artificial immune systems , 2008, Evol. Intell..

[3]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[4]  Luca Cardelli,et al.  Efficient, Correct Simulation of Biological Processes in the Stochastic Pi-calculus , 2007, CMSB.

[5]  Corrado Priami,et al.  Stochastic pi-Calculus , 1995, Comput. J..

[6]  R. Germain,et al.  The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. , 1999, Annual review of immunology.

[7]  Z. Grossman,et al.  Autoreactivity, dynamic tuning and selectivity. , 2001, Current opinion in immunology.

[8]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Norman,et al.  Model checking the probabilistic π-calculus , 2007 .

[10]  Peng Wu,et al.  Model checking the probabilistic pi-calculus , 2007 .

[11]  Jayajit Das,et al.  Sensitivity of T cells to antigen and antagonism emerges from differential regulation of the same molecular signaling module , 2007, Proceedings of the National Academy of Sciences.

[12]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[13]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[14]  Dejan Milutinovic,et al.  Immunological self-tolerance: lessons from mathematical modeling , 2005 .

[15]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[16]  T. McKeithan,et al.  Kinetic proofreading in T-cell receptor signal transduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Z. Grossman,et al.  Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[19]  Ofer Feinerman,et al.  Quantitative challenges in understanding ligand discrimination by alphabeta T cells. , 2008, Molecular immunology.

[20]  Jeremy H. Brock Immunobiology: the immune system in health and disease, C.A. Janeway, P. Travers (Eds.). Garland Publishers (1994), £18.95 (xvii + 575 pages) ISBN 0 865 42811 5 , 1995 .

[21]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.

[22]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[23]  Bernhard Hemmer,et al.  TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways , 2003, Nature Immunology.

[24]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[25]  Ronald N Germain,et al.  Modeling T Cell Antigen Discrimination Based on Feedback Control of Digital ERK Responses , 2005, PLoS biology.