Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability

Abstract Engineering approaches designed to improve parameters of conductometric gas sensors are being considered in this survey. In particular, in this paper we have analyzed engineering approaches used both for improvement of sensor stability and reliability, and for decrease of power dissipated by conductometric gas sensors. Analysis has shown that those engineering approaches can eliminate some genetic disadvantages of conductometric gas sensors, provide a significant improvement of their exploitation parameters, and expand their application in various fields.

[1]  Peter Kjeldsen,et al.  Evaluation of gas diffusion through plastic materials used in experimental and sampling equipment , 1993 .

[2]  Susan Lu,et al.  A study on crack propagation and electrical resistance change of sputtered aluminum thin film on poly ethylene terephthalate substrate under stretching , 2011 .

[3]  Joachim Frank,et al.  High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison , 2001 .

[4]  Victor V. Sysoev,et al.  Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films , 2009 .

[5]  D. Flandre,et al.  Micromachined thin-film sensors for SOI-CMOS co-integration , 2006 .

[6]  S. Morrison Selectivity in semiconductor gas sensors , 1987 .

[7]  J. Suehle,et al.  Microhotplate Platforms for Chemical Sensor Research , 2001 .

[8]  R. N. Peacock,et al.  Practical selection of elastomer materials for vacuum seals , 1980 .

[9]  Chia-Yen Lee,et al.  A MEMS-based Benzene Gas Sensor with a Self-heating WO3 Sensing Layer , 2009, Sensors.

[10]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[11]  M. Roth,et al.  Drift reduction of organic coated gas-sensors by temperature modulation , 1996 .

[12]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[13]  R. T. Rajendra Kumar,et al.  Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films , 2002 .

[14]  Eduard Llobet,et al.  Comparative study of nanocrystalline SnO2 materials for gas sensor application: Thermal stability and catalytic activity , 2009 .

[15]  Florin Udrea,et al.  Novel design and characterisation of SOI CMOS micro-hotplates for high temperature gas sensors , 2007 .

[16]  Fabrizio Davide,et al.  A self-organizing system for pattern classification: time varying statistics and sensor drift effects , 1995 .

[17]  Jürgen Wöllenstein,et al.  Micromechanical fabrication of robust low-power metal oxide gas sensors , 2003 .

[18]  I. Zhitomirsky,et al.  Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. , 2002, Advances in colloid and interface science.

[19]  Thorsten Wagner,et al.  A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica , 2011, Sensors.

[20]  Joachim Maier,et al.  Chemical diffusion of oxygen in tin dioxide , 2001 .

[21]  William Paul King,et al.  Nanotopographical imaging using a heated atomic force microscope cantilever probe , 2007 .

[22]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[23]  J. Haugen,et al.  Recalibration of a gas-sensor array system related to sensor replacement , 2004 .

[24]  J. Kwon,et al.  Effect of a sintering process on the electrical properties of SnO2 gas sensors. , 2010, Journal of Nanoscience and Nanotechnology.

[25]  Girolamo Di Francia,et al.  Conductometric Gas Nanosensors , 2009, J. Sensors.

[26]  Udo Weimar,et al.  Water–oxygen interplay on tin dioxide surface: Implication on gas sensing , 2005 .

[27]  W. Shin,et al.  Long-term stability of Pt/alumina catalyst combustors for micro-gas sensor application , 2008 .

[28]  H. Troy Nagle,et al.  Handbook of Machine Olfaction: Electronic Nose Technology , 2003 .

[29]  Theodor Doll,et al.  High-temperature MEMS Heater Platforms: Long-term Performance of Metal and Semiconductor Heater Materials , 2006, Sensors (Basel, Switzerland).

[30]  Charles Surya,et al.  Room temperature gas sensing properties of SnO2/multiwall-carbon-nanotube composite nanofibers , 2007 .

[31]  G. Korotcenkov,et al.  Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics , 2002 .

[32]  Soonhyun Kim,et al.  Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor , 2010 .

[33]  O. Tabata,et al.  Fast-response silicon flow sensor with an on-chip fluid temperature sensing element , 1986, IEEE Transactions on Electron Devices.

[34]  Giorgio Sberveglieri,et al.  Thermal treatment stabilization processes in SnO/sub 2/ thin films catalyzed with Au and Pt , 2002 .

[35]  Martin Moskovits,et al.  Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires , 2007 .

[36]  John Evans,et al.  Direct ink-jet printing of vertical walls , 2002 .

[37]  F. Udrea,et al.  SOI diode temperature sensor operated at ultra high temperatures - a critical analysis , 2008, 2008 IEEE Sensors.

[38]  F. Hossein-Babaei,et al.  Compensation for the drift-like terms caused by environmental fluctuations in the responses of chemoresistive gas sensors , 2010 .

[39]  Sangyoon Lee,et al.  Stability Improvement of Gallium Indium Zinc Oxide Thin Film Transistors by Post-Thermal Annealing , 2008 .

[40]  Enhancement of H2 Sensing Properties of In2O3-based Gas Sensor by Chemical Modification with SiO2 , 2004 .

[41]  Francisco Javier Ramirez Fernandez,et al.  Photoluminescence quenching effect on porous silicon films for gas sensors application. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[42]  Péter Fürjes,et al.  Explosion-proof monitoring of hydrocarbons by mechanically stabilised, integrable calorimetric microsensors , 2003 .

[43]  R. Potyrailo Enhancement in screening throughput and density of combinatorial libraries using wavelet analysis , 2004 .

[44]  A. Dieguez,et al.  A Monolithic Interface Circuit for Gas Sensor Arrays: Control and Measurement , 2004 .

[45]  Wolfgang Göpel,et al.  Metal Oxide Sensors: New Devices Through Tailoring Interfaces on the Atomic Scale , 1996 .

[46]  D. Barrettino,et al.  CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry , 2004, IEEE Sensors Journal.

[47]  G. Korotcenkov,et al.  Porous Semiconductors: Advanced Material for Gas Sensor Applications , 2010 .

[48]  William Paul King,et al.  Thermal conduction between a heated microcantilever and a surrounding air environment , 2009 .

[49]  Christoph Hagleitner,et al.  CMOS Single Chip Gas Detection Systems — Part I , 2002 .

[50]  Kwang Soo Yoo,et al.  Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor , 2000 .

[51]  Marco Stefancich,et al.  Low-power thick-film gas sensor obtained by a combination of screen printing and micromachining techniques , 2001 .

[52]  H. Hahn,et al.  Electrospun nanocomposite fiber mats as gas sensors , 2006 .

[53]  Udo Weimar,et al.  Influence of humidity on CO sensing with p-type CuO thick film gas sensors , 2011 .

[54]  W. Shin,et al.  Analytical Study of Resistance Drift Phenomena on (PANI)xMoO3 Hybrid Thin Films as Gas Sensors , 2008 .

[55]  Cosimo Distante,et al.  Recovery of drifting sensor responses by means of DWT analysis , 2007 .

[56]  Jordi Arbiol,et al.  High response and stability in CO and humidity measures using a single SnO2 nanowire , 2007 .

[57]  Sanjay Mathur,et al.  An experimental method to estimate the temperature of individual nanowires , 2009 .

[58]  Enjie Ding,et al.  Power reduction with enhanced sensitivity for pellistor methane sensor by improved thermal insulation packaging , 2013 .

[59]  Muriel Loesch,et al.  Comparison between two Figaro sensors (TGS 813 and TGS 842) for the detection of methane, in terms of selectivity and long-term stability , 1995 .

[60]  Y. Nakamura Stability of the Sensitivity of SnO2- Based Elements in the Field , 1989 .

[61]  Kenneth E. Goodson,et al.  Investigation of the natural convection boundary condition in microfabricated structures , 2008 .

[62]  Anne-Claude Romain,et al.  Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview , 2009 .

[63]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[64]  Zhi Chen,et al.  High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide , 2009 .

[65]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[66]  V. Meynen,et al.  Preparation and characterization of SnO2 nanoparticles of enhanced thermal stability: The effect of phosphoric acid treatment on SnO2·nH2O , 2005 .

[67]  Ralf Moos,et al.  Resistive Oxygen Gas Sensors for Harsh Environments , 2011, Sensors.

[68]  M. Pelino,et al.  Microstructural effect on NO2 sensitivity of WO3 thin film gas sensors Part 1. Thin film devices, sensors and actuators , 1996 .

[69]  M. Gaitan,et al.  Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing , 1993, IEEE Electron Device Letters.

[70]  R. Blick,et al.  Fabrication and transport characterization of a primary thermometer formed by Coulomb islands in a suspended silicon nanowire , 2003 .

[71]  Norio Miura,et al.  Thermal and gas-sensing properties of planar-type micro gas sensor , 2000 .

[72]  Douglas C. Meier,et al.  Coupling Nanowire Chemiresistors with MEMS Microhotplate Gas Sensing Platforms , 2007 .

[73]  Alireza Salehi,et al.  A highly sensitive self heated SnO2 carbon monoxide sensor , 2003 .

[74]  Liwei Lin,et al.  An electrothermal carbon nanotube gas sensor. , 2007, Nano letters.

[75]  Noboru Yamazoe,et al.  Interactions of tin oxide surface with O2, H2O AND H2 , 1979 .

[76]  Makoto Egashira,et al.  Effects of microstructure of mesoporous SnO2 powders on their H2 sensing properties , 2009 .

[77]  R. Ionescu Ageing and p-type conduction in SnO2 gas sensors , 1999 .

[78]  Christoph Hagleitner,et al.  Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem. , 2004, Analytical chemistry.

[79]  F. Zhang,et al.  Thermal stability of IrO/sub 2/ nanowires , 2005, 2005 International Conference on MEMS,NANO and Smart Systems.

[80]  I. Sayago,et al.  Long-term reliability of sensors for detection of nitrogen oxides , 1995 .

[81]  Jérôme Courbat,et al.  Temperature, humidity and gas sensors integrated on plastic foil for low power applications , 2009 .

[82]  Xijin Xu,et al.  Crystallinity‐Controlled Germanium Nanowire Arrays: Potential Field Emitters , 2008 .

[83]  M. Bagheri-Mohagheghi,et al.  The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method , 2008 .

[84]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[85]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .

[86]  M. Wautelet On the melting of polyhedral elemental nanosolids , 2005 .

[87]  G. Scholz,et al.  Marktanalyse: Sensoren und Meßgeräte für Gasfeuchte / Market analysis: Sensors and instruments for gas humidity , 1992 .

[88]  W. Perkins Permeation and Outgassing of Vacuum Materials , 1973 .

[89]  G. Korotcenkov,et al.  Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides , 2006 .

[90]  A. Claire Permeation of Gases through Solids , 1991 .

[91]  Ada Fort,et al.  Modeling The Influence Of H2O On Metal Oxide Sensor Responses To CO , 2009 .

[92]  Anna Vilà,et al.  Deposition on micromachined silicon substrates of gas sensitive layers obtained by a wet chemical route: a CO/CH4 high performance sensor , 2001 .

[93]  T. Choi,et al.  Fabrication and electrical characterization of circuits based on individual tin oxide nanowires , 2006, Nanotechnology.

[94]  Kurt D. Benkstein,et al.  The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors , 2007 .

[95]  L. Zeller,et al.  Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares , 2008 .

[96]  Thomas W. Kenny,et al.  Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation , 2002 .

[97]  Luca Francioso,et al.  SnO2 thin films from metalorganic precursors: Synthesis, characterization, microelectronic processing and gas-sensing properties , 2007 .

[98]  John A. Small,et al.  Growth of SnO2 films on micromachined hotplates , 1995 .

[99]  P.C.H. Chan,et al.  Investigation and control of microcracks in tin oxide gas sensing thin-films , 2001 .

[100]  H. T. Nagle,et al.  Handbook of Machine Olfaction , 2002 .

[101]  F. Liu,et al.  Surface characterization study on SnO2 powder modified by thiourea , 2005 .

[102]  A. Kolmakov,et al.  Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors , 2008, Nanotechnology.

[103]  Udo Weimar,et al.  CO sensing with SnO2 thick film sensors: role of oxygen and water vapour , 2003 .

[104]  Jim P. Zheng,et al.  Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt , 2006 .

[105]  Pere Caminal,et al.  Drift Compensation of Gas Sensor Array Data by Common Principal Component Analysis , 2010 .

[106]  Kensall D. Wise Integrated sensors: interfacing electronics to a non-electronic world , 1981 .

[107]  Jiaqiang Xu,et al.  Investigation of a new In2O3-based selective H2 gas sensor with low power consumption , 2005 .

[108]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[109]  Hei Wong,et al.  Sensitivity and stability of porous polycrystalline silicon gas sensor , 2001 .

[110]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[111]  D. Kohl The role of noble metals in the chemistry of solid-state gas sensors , 1990 .

[112]  A. Kolmakov,et al.  Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors , 2008 .

[113]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[114]  Cosimo Distante,et al.  Drift counteraction with multiple self-organising maps for an electronic nose , 2004 .

[115]  D. Briand,et al.  Thermal simulation and characterization for the design of ultra-low power micro-hotplates on flexible substrate , 2008, 2008 IEEE Sensors.

[116]  Ghenadii Korotcenkov,et al.  Grain Size Effects in Sensor Response of Nanostructured SnO2- and In2O3-Based Conductometric Thin Film Gas Sensor , 2009 .

[117]  H. Meixner,et al.  Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases , 1994 .

[118]  Angeliki Tserepi,et al.  Thermal properties of suspended porous silicon micro-hotplates for sensor applications , 2003 .

[119]  W. Lang,et al.  Silicon microstructuring technology , 1996 .

[120]  P. Pawlow Über die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers , 1909 .

[121]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[122]  Alexandre Perera,et al.  Drift compensation of gas sensor array data by Orthogonal Signal Correction , 2010 .

[123]  S. Järås,et al.  Deactivation of high temperature combustion catalysts , 2001 .

[124]  Thomas Maier,et al.  Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection , 2009 .

[125]  A. Kolmakov,et al.  Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. , 2005, The journal of physical chemistry. B.

[126]  Axel Richter,et al.  Application of porous silicon as a sacrificial layer , 1994 .

[127]  Danick Briand,et al.  Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors , 2000 .

[128]  D. S. Vlachos,et al.  Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors , 1997 .

[129]  A. Hierlemann,et al.  Higher-order Chemical Sensing , 2007 .

[130]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[131]  Inkyu Park,et al.  Selective surface functionalization of silicon nanowires via nanoscale joule heating. , 2007, Nano letters.

[132]  Gerard C. M. Meijer Thermal sensors based on transistors , 1986 .

[133]  J. H. Lee,et al.  Gas sensors using hierarchical and hollow oxide nanostructures: Overview , 2009 .

[134]  M. Holmberg,et al.  Drift Compensation, Standards, and Calibration Methods , 2004 .

[135]  Giovanni Squillero,et al.  Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation , 2011, Pattern Recognit. Lett..

[136]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[137]  Wolfgang Benecke,et al.  Thick porous silicon formation using implanted mask technology , 2001 .

[138]  J. Boyle,et al.  The effects of CO, water vapor and surface temperature on the conductivity of a SnO2 gas sensor , 1977 .

[139]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[140]  S Mathur,et al.  Portable microsensors based on individual SnO2 nanowires , 2007, Nanotechnology.

[141]  L. Francioso,et al.  Micrometric patterning process of sol–gel SnO2, In2O3 and WO3 thin film for gas sensing applications: Towards silicon technology integration , 2006 .

[142]  V. Ghafarinia,et al.  A Smart Gas Sensor Insensitive to Humidity and Temperature Variations , 2011 .

[143]  J. Fierro,et al.  Metal oxides : chemistry and applications , 2005 .

[144]  Joseph R. Stetter,et al.  Kinetics of indium oxide-based thin film gas sensor response: The role of “redox” and adsorption/desorption processes in gas sensing effects , 2007 .

[145]  D. M. Lowe,et al.  Stability of supported metal and supported metal oxide combustion catalysts , 1999 .

[146]  Liu Junhua,et al.  Drift reduction of gas sensor by wavelet and principal component analysis , 2003 .

[147]  René Lalauze,et al.  Gas detection for automotive pollution control , 1999 .

[148]  Matteo Ferroni,et al.  Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure , 1998 .

[149]  F. J. Gracia,et al.  Built-in active filter for an improved response to carbon monoxide combining thin- and thick-film technologies , 2002 .

[150]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[151]  Joseph R. Stetter,et al.  The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response , 2007 .

[152]  Christophe Pijolat,et al.  Development of a protected gas sensor for exhaust automotive applications , 2002 .

[153]  S. Olaizola,et al.  Comparative structural study between sputtered and liquid pyrolysis nanocrystaline SnO2 , 2000 .

[154]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[155]  J. Brezmes,et al.  Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies , 2007 .

[156]  P.C.H. Chan,et al.  An experimental study on micro-gas sensors with strip shape tin oxide thin films , 2009 .

[157]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[158]  B. Rauch,et al.  Zur Thermodiffusion großer Fadenmoleküle in nichtidealer Lösung , 1969 .

[159]  Jacek Rynkowski,et al.  The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen , 2011 .

[160]  Maximilian Fleischer,et al.  Gallium oxide thin films: A new material for high-temperature oxygen sensors , 1991 .

[161]  Fredrik Winquist,et al.  Drift counteraction in odour recognition applications: lifelong calibration method , 1997 .

[162]  G. Guisbiers,et al.  Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures , 2007 .

[163]  A. Romain,et al.  Three years experiment with the same tin oxide sensor arrays for the identification of malodorous sources in the environment , 2002 .

[164]  Leszek Golonka,et al.  Heaters for gas sensors from thick conductive or resistive films , 1994 .

[165]  Shankar Vembu,et al.  Chemical gas sensor drift compensation using classifier ensembles , 2012 .

[166]  Giorgio Sberveglieri,et al.  The aging effect on SnO2 Au thin film sensors: electrical and structural characterization , 2000 .

[167]  Peter Steiner,et al.  Micromachining applications of porous silicon , 1995 .

[168]  Nicolae Barsan,et al.  Flame spray synthesis of tin dioxide nanoparticles for gas sensing , 2004 .

[169]  G. Reinhardt,et al.  CO-sensing properties of doped SnO2 sensors in H2-rich gases , 2004 .

[170]  N. Bârsan,et al.  Micromachined metal oxide gas sensors: opportunities to improve sensor performance , 2001 .

[171]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[172]  Jian-Wei Gong,et al.  Temperature feedback control for improving the stability of a semiconductor-metal-oxide (SMO) gas sensor , 2006, IEEE Sensors Journal.

[173]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[174]  G. Fei,et al.  Structural stability of Co nanowire arrays embedded in the PAAM , 2006 .

[175]  P. Ho,et al.  Electromigration in metals , 1989 .

[176]  C. Tsamis,et al.  Alternative micro-hotplate design for low power sensor arrays , 2006 .

[177]  Vladimir M. Aroutiounian,et al.  Sol–gel derived thin-film semiconductor hydrogen gas sensor , 2007 .

[178]  C. Baratto,et al.  Metal oxide nanocrystals for gas sensing , 2004, Proceedings of IEEE Sensors, 2004..

[179]  Sanjay Mathur,et al.  Electrical properties of individual tin oxide nanowires contacted to platinum electrodes , 2007 .

[180]  Florin Udrea,et al.  Design and simulations of SOI CMOS micro-hotplate gas sensors , 2001 .

[181]  Jinlan Wang,et al.  How does the nickel nanowire melt , 2005 .

[182]  Florin Udrea,et al.  CMOS Interfacing for Integrated Gas Sensors: A Review , 2010, IEEE Sensors Journal.

[183]  Marina Cole,et al.  Design and simulation of a smart ratiometric ASIC chip for VOC monitoring , 2003 .

[184]  Zhong Lin Wang,et al.  Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks , 2006 .

[185]  M. Sjöström,et al.  Drift correction for gas sensors using multivariate methods , 2000 .

[186]  Jerome B. Sohn,et al.  Photoassisted electrochemical micromachining of silicon in HF electrolytes , 1994 .

[187]  Joseph R. Stetter,et al.  Effect of air humidity on gas response of SnO2 thin film ozone sensors , 2007 .

[188]  Andreas Helwig,et al.  Micro-Fabrication of Gas Sensors , 2009 .

[189]  B. Derby,et al.  Ink Jet Printing of PZT Aqueous Ceramic Suspensions , 1999 .

[190]  V. V. Malyshev,et al.  Propane/butane semiconductor gas sensor with low power consumption , 1997 .

[191]  Hidemoto Nakagawa,et al.  The interference elimination for gas sensor by catalyst filters , 2000 .

[192]  Temperature Dependent CO Oxidation Mechanisms on Size-Selected Clusters , 2010 .

[193]  P. Vasambekar,et al.  Ferrite Gas Sensors , 2011, IEEE Sensors Journal.

[194]  Peter Steiner,et al.  A thin film bolometer using porous silicon technology , 1994 .

[195]  Ghenadii Korotcenkov,et al.  Thin film SnO2-based gas sensors: Film thickness influence , 2009 .

[196]  K. Takahata,et al.  Stabilization of SnO2 sintered gas sensors , 1991 .

[197]  U. Lampe,et al.  Metal Oxide Sensors , 1995, International Conference on Solid-State Sensors, Actuators and Microsystems.

[198]  Matteo Ferroni,et al.  Gas sensing through thick film technology , 2002 .

[199]  James L. Gole,et al.  Tin Oxide Nanowires, Nanoribbons, and Nanotubes , 2002 .

[200]  Joan Daniel Prades,et al.  Harnessing self-heating in nanowires for energy efficient, fully autonomous and ultra-fast gas sensors , 2010 .

[201]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[202]  P. Sebastián,et al.  Thermal stability and structural deformation of rutile SnO2 nanoparticles , 2003 .

[203]  M. Capeans Aging of gaseous detectors: Assembly materials and procedures , 2002 .

[204]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[205]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[206]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[207]  V. Brynzari,et al.  Simulation of thin film gas sensors kinetics , 1999 .

[208]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[209]  Carles Cané,et al.  Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors , 1999 .

[210]  A. Gurlo,et al.  Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. , 2011, Nanoscale.

[211]  Takeshi Matsuura,et al.  Water vapor sorption and transport in dense polyimide membranes , 2003 .

[212]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .

[213]  G. Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure , 2009 .

[214]  W. Göpel,et al.  Filters for tin dioxide CO gas sensors to pass the UL2034 standard , 2000 .

[215]  I-Ming Hsing,et al.  Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices , 2001 .

[216]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[217]  Selected-area deposition of multiple active films for conductometric microsensor arrays , 1996 .

[218]  Núria López,et al.  Quantitative analysis of CO-humidity gas mixtures with self-heated nanowires operated in pulsed mode , 2010 .

[219]  Eugenio Martinelli,et al.  Counteraction of environmental disturbances of electronic nose data by independent component analysis , 2002 .

[220]  Jinseong Kim,et al.  Combinatorial libraries of semiconductor gas sensors as inorganic electronic noses , 2003 .

[221]  Jacques Nicolas,et al.  Monitoring an Odour in the Environment with an Electronic Nose: Requirements for the Signal Processing , 2009 .

[222]  I. Bársony,et al.  CMOS integrated tactile sensor array by porous Si bulk micromachining , 2008 .

[223]  Z. M. Rittersma,et al.  Recent achievements in miniaturised humidity sensors—a review of transduction techniques , 2002 .

[224]  Johnny K. O. Sin,et al.  Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications , 1996 .

[225]  G. Korotcenkov,et al.  Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) , 2011 .

[226]  N. Vuong,et al.  Realization of an open space ensemble for nanowires: a strategy for the maximum response in resistive sensors , 2012 .

[227]  Zeng-Yuan Guo,et al.  Size effect on microscale single-phase flow and heat transfer , 2002 .

[228]  Chi-En Lu,et al.  Humidity Sensors: A Review of Materials and Mechanisms , 2005 .

[229]  R. G. Pavelko,et al.  Interplay of H2, water vapor and oxygenat the surface of SnO2 based gas sensors – An operando investigation utilizing deuterated gases , 2012 .

[230]  J. Halloran,et al.  Freeform fabrication of ceramics , 1999 .

[231]  Vladimir M. Aroutiounian,et al.  IMPROVEMENT AND STABILIZATION OF THIN-FILM HYDROGEN SENSORS PARAMETERS , 2009 .

[232]  Mark Edward Byrnes Field Sampling Methods for Remedial Investigations , 1994 .

[233]  V. Brynzari,et al.  Electrical behavior of SnO2 thin films in humid atmosphere , 1999 .

[234]  Ghenadii Korotcenkov,et al.  Practical aspects in design of one-electrode semiconductor gas sensors: Status report , 2007 .

[235]  Ghenadii Korotcenkov,et al.  Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey) , 2013 .

[236]  Andreas Hierlemann,et al.  CMOS-based chemical microsensors. , 2003, The Analyst.

[237]  Noboru Yamazoe,et al.  Toward innovations of gas sensor technology , 2005 .

[239]  Sanjay Mathur,et al.  Direct observation of the gas-surface interaction kinetics in nanowires through pulsed self-heating assisted conductometric measurements , 2009 .

[240]  Franco Maloberti,et al.  A Smart Sensor System for Carbon Monoxide Detection , 1997 .

[241]  Yen‐Fu Lin,et al.  The impact of nanocontact on nanowire based nanoelectronics. , 2008, Nano letters.

[242]  P. Chaparala,et al.  Fast temperature programmed sensing for micro-hotplate gas sensors , 1995, IEEE Electron Device Letters.

[243]  Sanjay Mathur,et al.  On the role of individual metal oxide nanowires in the scaling down of chemical sensors. , 2009, Physical chemistry chemical physics : PCCP.

[244]  Enrico Zanoni,et al.  Long-term reliability of Ti-Pt-Au metallization system for Schottky contact and first-level metallization on SiC MESFET , 2004, Microelectron. Reliab..

[245]  Ghenadii Korotcenkov,et al.  The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization , 2012 .

[246]  L. D. Angelis,et al.  Selectivity and stability of a tin dioxide sensor for methane , 1995 .

[247]  R. Cattrall Chemical Sensors , 1997 .

[248]  A. Friedberger,et al.  Breaking the isotropy of porous silicon formation by means of current focusing , 1999 .

[249]  Andreas Hierlemann,et al.  Integrated array sensor for detecting organic solvents , 1995 .

[250]  N. Masters,et al.  The impact of subcontinuum gas conduction on topography measurement sensitivity using heated atomic force microscope cantilevers , 2005 .

[251]  R. Ionescu,et al.  Time-dependent humidity calibration for drift corrections in electronic noses equipped with SnO2 gas sensors , 2000 .

[252]  A. Cornet,et al.  Experimental and theoretical studies of indium oxide gas sensors fabricated by spray pyrolysis , 2005 .

[253]  Sanjay Mathur,et al.  Ultralow power consumption gas sensors based on self-heated individual nanowires , 2008 .

[254]  K. Tabata,et al.  Sensitivity control of SnO2 by morphology of thin film , 1997 .

[255]  David E. Williams,et al.  Microstructure effects on the response of gas-sensitive resistors based on semiconducting oxides , 2000 .

[256]  K D Wise,et al.  Microfabrication techniques for integrated sensors and microsystems. , 1991, Science.

[257]  K. Hara,et al.  Thin-film gas sensors operating in a perpendicular current mode , 2013 .

[258]  E. B. Maxted The Poisoning of Metallic Catalysts , 1951 .

[259]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[260]  J. Haugen,et al.  A calibration method for handling the temporal drift of solid state gas-sensors , 2000 .

[261]  J. Fischer,et al.  Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires. , 2005, Nano letters.

[262]  Johannes G.E. Gardeniers,et al.  Porous silicon bulk micromachining for thermally isolated membrane formation , 1996 .

[263]  Balaji Panchapakesan,et al.  Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications , 2001 .

[264]  G. Korotcenkov,et al.  Silicon Porosification: State of the Art , 2010 .

[265]  Nicolae Barsan,et al.  Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles , 2006 .

[266]  S. Billat,et al.  Structuring of membrane sensors using sacrificial porous silicon , 2000 .

[267]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[268]  Yasutaka Ozaki,et al.  Enhanced long-term stability of SnO2-based CO gas sensors modified by sulfuric acid treatment , 2000 .

[269]  P. Dufresne Hydroprocessing catalysts regeneration and recycling , 2007 .

[270]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[271]  C. Pijolat,et al.  Tin dioxide gas sensor as a tool for atmospheric pollution monitoring: Problems and possibilities for improvements , 2003 .

[272]  Péter Fürjes,et al.  Thermal characterisation of micro-hotplates used in sensor structures , 2004 .

[273]  Luca Francioso,et al.  Linear temperature microhotplate gas sensor array for automotive cabin air quality monitoring , 2008 .