Suborbits in Transitive Permutation Groups
暂无分享,去创建一个
[1] Noboru Ito. On uniprimitive permutation groups of degree 2p , 1967 .
[2] D. G. Higman. Primitive rank 3 groups with a prime subdegree , 1965 .
[3] Peter J. Cameron,et al. Bounding the rank of certain permutation groups , 1972 .
[4] H. Wielandt,et al. Permutation groups through invariant relations and invariant functions , 1969 .
[5] Walter Feit,et al. Characters of finite groups , 1965 .
[6] Peter J. Cameron. Extending Symmetric Designs , 1973, J. Comb. Theory, Ser. A.
[7] E. Bannai,et al. On finite Moore graphs , 1973 .
[8] W. A. Manning. On Simply Transitive Primitive Groups. , 1927, Proceedings of the National Academy of Sciences of the United States of America.
[9] F. C. Piper,et al. FINITE GROUPS OF AUTOMORPHISMS , 1974 .
[10] Walter Feit,et al. The nonexistence of certain generalized polygons , 1964 .
[11] D. G. Higman. Intersection matrices for finite permutation groups , 1967 .
[12] Peter J. Cameron. Permutation Groups with Multiply Transitive Suborbits , 1972 .
[13] W. Kantor,et al. Finite groups with a split BN-pair of rank 1. II , 1972 .
[14] Wolfgang Knapp,et al. On the point stabilizer in a primitive permutation group , 1973 .
[15] W. Burnside,et al. On some Properties of Groups of Odd Order , 1900 .
[16] Surinder K. Sehgal,et al. Subnormal subgroups and permutation groups : lectures given at the Ohio State University, Columbus, Ohio, in the Spring of 1971 , 1971 .
[17] Norman Biggs,et al. On Trivalent Graphs , 1971 .
[18] Anthony Gardiner. Doubly primitive vertex stabilisers in graphs , 1974 .
[19] Dale M. Mesner,et al. A New Family of Partially Balanced Incomplete Block Designs with Some Latin Square Design Properties , 1967 .
[20] Derek H. Smith. Bounding the diameter of a distance-transitive graph , 1974 .
[21] H. Wielandt,et al. Finite Permutation Groups , 1964 .
[22] Helmut Bender,et al. Transitive gruppen gerader ordnung, in denen jede involution genau einen punkt festläβt , 1971 .
[23] W. J. Wong,et al. Determination of a class of primitive permutation groups , 1967 .
[24] Helmut Wielandt. Über den Transitivitätsgrad von Permutationsgruppen , 1960 .
[25] Jacques Tits,et al. Sur la trialité et certains groupes qui s’en déduisent , 1959 .
[26] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] Permutation Groups with Multiply‐Transitive Suborbits, II , 1974 .
[28] John G. Thompson,et al. Bounds for orders of maximal subgroups , 1970 .
[29] R. M. Damerell. On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] Charles C. Sims,et al. Graphs and finite permutation groups , 1967 .
[31] A. Gardiner. ARC TRANSITIVITY IN GRAPHS III , 1974 .
[32] A. Lempel. m-ary closed sequences , 1971 .
[33] Derek H. Smith. Primitive and imprimitive graphs , 1971 .
[34] D. Djoković,et al. On regular graphs, VI , 1973 .
[35] Primitive groups with most suborbits doubly transitive , 1973 .
[36] William M. Kantor,et al. 2-Transitive Designs , 1975 .
[37] A. Gardiner,et al. ARC TRANSITIVITY IN GRAPHS , 1973 .
[38] G. Higman,et al. Embedding Theorems for Groups , 1949 .
[39] W. A. Manning. A theorem concerning simply transitive primitive groups , 1929 .
[40] W. T. Tutte. On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.
[41] William L. Quirin. Primitive permutation groups with small orbitals , 1971 .
[42] C. Sims. Computational methods in the study of permutation groups , 1970 .
[43] M. S. Smith,et al. On rank 3 permutation groups , 1975 .
[44] D. G. Higman. Finite permutation groups of rank 3 , 1964 .
[45] P. Delsarte,et al. The Association Schemes of Coding Theory , 1975 .
[46] Extension of some results of Manning and Wielandt on primitive permutation groups , 1971 .
[47] J. L. Britton,et al. THE WORD PROBLEM , 1963 .
[48] D. G. Higman. Combinatorial considerations about permutation groups , 1972 .
[49] Primitive Permutationsgruppen vom Grad 2p , 1955 .
[50] Mike D. Atkinson. DOUBLY TRANSITIVE BUT NOT DOUBLY PRIMITIVE PERMUTATION GROUPS II , 1974 .