A generalized framework for deriving nonparametric standardized drought indicators

This paper introduces the Standardized Drought Analysis Toolbox (SDAT) that offers a generalized framework for deriving nonparametric univariate and multivariate standardized indices. Current indicators suffer from deficiencies including temporal inconsistency, and statistical incomparability. Different indicators have varying scales and ranges and their values cannot be compared with each other directly. Most drought indicators rely on a representative parametric probability distribution function that fits the data. However, a parametric distribution function may not fit the data, especially in continental/global scale studies. SDAT is based on a nonparametric framework that can be applied to different climatic variables including precipitation, soil moisture and relative humidity, without having to assume representative parametric distributions. The most attractive feature of the framework is that it leads to statistically consistent drought indicators based on different variables.

[1]  Jean-Daniel Saphores,et al.  Australia's drought: lessons for California. , 2014, Science.

[2]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[3]  G. Senay,et al.  Climate science and famine early warning , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  A. Aghakouchak,et al.  A near real-time satellite-based global drought climate data record , 2012 .

[5]  B. Turnbull The Empirical Distribution Function with Arbitrarily Grouped, Censored, and Truncated Data , 1976 .

[6]  E. Wood,et al.  A simulated soil moisture based drought analysis for the United States , 2004 .

[7]  V. Hrissanthou,et al.  Computation of Drought Index SPI with Alternative Distribution Functions , 2012, Water Resources Management.

[8]  Jürgen Vogt,et al.  TOWARD GLOBAL DROUGHT EARLY WARNING CAPABILITY Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting , 2013 .

[9]  T. McKee,et al.  THE RELATIONSHIP OF DROUGHT FREQUENCY AND DURATION TO TIME SCALES , 1993 .

[10]  N. Guttman ACCEPTING THE STANDARDIZED PRECIPITATION INDEX: A CALCULATION ALGORITHM 1 , 1999 .

[11]  J. Dracup,et al.  On the definition of droughts , 1980 .

[12]  Eric F. Wood,et al.  A Prototype Global Drought Information System Based on Multiple Land Surface Models , 2014 .

[13]  K. Trenberth,et al.  A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming , 2004 .

[14]  Dennis P. Lettenmaier,et al.  Multimodel Ensemble Reconstruction of Drought over the Continental United States , 2009 .

[15]  Anne Steinemann,et al.  Developing Multiple Indicators and Triggers for Drought Plans , 2006 .

[16]  R. Heim A Review of Twentieth-Century Drought Indices Used in the United States , 2002 .

[17]  D. Wilhite Drought and Water Crises : Science, Technology, and Management Issues , 2005 .

[18]  Wayne C. Palmer,et al.  Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index , 1968 .

[19]  V. Singh,et al.  A review of drought concepts , 2010 .

[20]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[21]  A. Aghakouchak,et al.  Global integrated drought monitoring and prediction system , 2014, Scientific Data.

[22]  D. Lettenmaier,et al.  Twentieth-Century Drought in the Conterminous United States , 2005 .

[23]  T. Tadesse,et al.  The Vegetation Drought Response Index (VegDRI): A New Integrated Approach for Monitoring Drought Stress in Vegetation , 2008 .

[24]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[25]  Fabio Castelli,et al.  Mutual interaction of soil moisture state and atmospheric processes , 1996 .

[26]  D. C. Edwards,et al.  Characteristics of 20th Century Drought in the United States at Multiple Time Scales. , 1997 .

[27]  Amir AghaKouchak,et al.  Global trends and patterns of drought from space , 2014, Theoretical and Applied Climatology.

[28]  M. Gebremichael,et al.  Satellite rainfall applications for surface hydrology , 2010 .

[29]  K. Mo,et al.  Model-Based Drought Indices over the United States , 2008 .

[30]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  A. Aghakouchak,et al.  Toward a Drought Cyberinfrastructure System , 2014 .

[32]  A. Aghakouchak,et al.  Multivariate Standardized Drought Index: A parametric multi-index model , 2013 .

[33]  James P. Verdin,et al.  Real-Time Decision Support Systems: The Famine Early Warning System Network , 2010 .

[34]  Amir AghaKouchak,et al.  A baseline probabilistic drought forecasting framework using standardized soil moisture index: application to the 2012 United States drought , 2014 .

[35]  Amir AghaKouchak,et al.  A Nonparametric Multivariate Multi-Index Drought Monitoring Framework , 2014 .

[36]  N. McDowell,et al.  Numerical Terradynamic Simulation Group 1-2013 A Remotely Sensed Global Terrestrial Drought Severity Index , 2017 .

[37]  Tao Zhang,et al.  Anatomy of an Extreme Event , 2013 .

[38]  B. Rémillard,et al.  Empirical Processes Based on Pseudo-Observations II : theMultivariate , 1998 .

[39]  E. Wood,et al.  A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security , 2014 .

[40]  D. Wilhite,et al.  CHAPfER2UNDERSTANDING THE DROUGHT PHENOMENON:THE ROLE OF DEFINITIONS , 1985 .

[41]  Martha C. Anderson,et al.  Remote sensing of drought : innovative monitoring approaches , 2012 .

[42]  J. Marengo,et al.  The drought of 2010 in the context of historical droughts in the Amazon region , 2011 .

[43]  W. Knight A Computer Method for Calculating Kendall's Tau with Ungrouped Data , 1966 .

[44]  W. J. Werick,et al.  National drought atlas developed , 1994 .

[45]  Irving I. Gringorten,et al.  A plotting rule for extreme probability paper , 1963 .

[46]  E. Habib,et al.  Estimation of tail dependence coefficient in rainfall accumulation fields , 2009 .

[47]  A. Aghakouchak A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought , 2015 .

[48]  T. Tadesse,et al.  A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains , 2005 .

[49]  S. Vicente‐Serrano,et al.  A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index , 2009 .

[50]  Dennis P. Lettenmaier,et al.  Drought Monitoring for Washington State: Indicators and Applications , 2011 .

[51]  S. Shukla,et al.  Use of a standardized runoff index for characterizing hydrologic drought , 2008 .

[52]  D. Wilhite,et al.  Monitoring the 1996 Drought Using the Standardized Precipitation Index , 1999 .

[53]  M. Palecki,et al.  THE DROUGHT MONITOR , 2002 .

[54]  R. Koster,et al.  Assessment and Enhancement of MERRA Land Surface Hydrology Estimates , 2011 .

[55]  M. Naresh Kumar,et al.  On the use of Standardized Precipitation Index(SPI) for drought intensity assessment , 2009 .

[56]  Ximing Cai,et al.  Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois , 2011 .

[57]  Rao S. Govindaraju,et al.  A copula-based joint deficit index for droughts. , 2010 .

[58]  Steven M. Quiring,et al.  Developing Objective Operational Definitions for Monitoring Drought , 2009 .

[59]  Taha B. M. J. Ouarda,et al.  The Gumbel mixed model for flood frequency analysis , 1999 .