Crystallization of SiO2-CaO-Na2O Glass Using Sugarcane Bagasse Ash as Silica Source

This work reports the feasibility results of recycling sugar cane bagasse ash (SCBA) to produce glass-ceramic. The major component of this solid residue is SiO 2 (>89%). A 100 g batch composition containing ash, CaO and Na 2 O was melted and afterward, poured into water to produce a glass frit. The crystallization kinetic study by nonisothermal method was performed on powder samples ( 970°C, and below this temperature there is a predominance of rankinite. The crystallization activation energies calculated by the Kissinger and Ligero methods are equivalent: 374±10 and 378±13 kJ/mol. The growth morphology parameters have equal values n=m=1.5 indicating that bulk nucleation is the dominant mechanism in this crystallization process, where there is a three-dimensional growth of crystals with polyhedron-like morphology controlled by diffusion from a constant number of nuclei. However, differential thermal analysis (DTA) curves on both monolithic and powder glass samples suggest that crystallization of the powder glass sample occurs through a surface mechanism. The divergence in both results suggests that the early stage of surface crystallization occurs through a three-dimensional growth of crystals, which will then transform to one-dimensional growth.

[1]  J. Bonnet,et al.  Sintering of clay-chamotte ceramic composites for refractory bricks , 2008 .

[2]  M. Romero,et al.  Effect of particle size on kinetics crystallization of an iron-rich glass , 2008, Journal of Materials Science.

[3]  J. Ferreira,et al.  Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass , 2007 .

[4]  Guohua Chen Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics , 2007 .

[5]  R. Brow,et al.  Determining kinetic parameters for isothermal crystallization of glasses , 2007 .

[6]  E. Bernardo,et al.  Sintered glass-ceramics from mixtures of wastes , 2007 .

[7]  S. Misture,et al.  Crystallization Kinetics of Lithium Orthosilicate Glasses , 2006 .

[8]  Aldo R. Boccaccini,et al.  Glass-ceramics: Their production from wastes—A Review , 2006 .

[9]  J. Rincón,et al.  Kinetic of mullite formation from a porcelain stoneware body for tiles production , 2006 .

[10]  E. Y. Kawachi,et al.  Mullite crystallization mechanism obtained from kinetic parameters determination for seeded and non-seeded gel , 2005 .

[11]  I. Lancellotti,et al.  Nucleation and Crystallization of New Glasses from Fly Ash Originating from Thermal Power Plants , 2004 .

[12]  Anna Maria Ferrari,et al.  Crystallization of (Na2O–MgO)–CaO–Al2O3–SiO2 Glassy Systems Formulated from Waste Products , 2004 .

[13]  Antônio Claret Soares Sabioni,et al.  Preparação de mulita a partir do mineral topázio , 2004 .

[14]  M. Hon,et al.  Phase transformation and growth of mullite in kaolin ceramics , 2004 .

[15]  C. L. Carvalho,et al.  Crystallization kinetics in phosphate sodium-based glass studied by DSC technique , 2003 .

[16]  C. Rüssel,et al.  Microstructure-property relationship in high-strength MgO-Al2O3-SiO2-TiO2 glass-ceramics , 2002 .

[17]  George H. Beall,et al.  Glass Ceramic Technology , 2002 .

[18]  Jenn–Ming Wu,et al.  Effect of Composition on Microstructural Development in MgO–Al2O3–SiO2 Glass-Ceramics , 2001 .

[19]  R. Rawlings,et al.  Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics , 2001 .

[20]  E. Mazzucato,et al.  Wollastonite polytypes in the CaO-SiO2 system. , 2000 .

[21]  A. Faleiros,et al.  Kinetics of phase change , 2000 .

[22]  Maximina Romero,et al.  El proceso de vitrificación/cristalización controlada aplicado al reciclado de residuos industriales inorgánicos , 2000 .

[23]  R. Cernik,et al.  Crystallisation Kinetics and Phase Relations of Wollastonite by Real Time Synchrotron Powder Diffraction , 2000 .

[24]  B. Mitchell,et al.  Nucleation and crystallization in calcium aluminate glasses , 1999 .

[25]  R. D. Rawlings,et al.  Development of a new glass–ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration , 1999 .

[26]  C. Stan,et al.  Non-Isothermal Crystallization of Cordierite Glasses , 1999 .

[27]  L. Gránásy,et al.  KINETICS OF WOLLASTONITE NUCLEATION IN CAO.SIO2 GLASS , 1998 .

[28]  M. Starink,et al.  An analysis method for nucleation and growth controlled reactions at constant heating rate , 1997 .

[29]  G. Qian,et al.  The process of crystallization of gel and the luminescence of ions in gel-derived crystals , 1997 .

[30]  A. T. Fonseca,et al.  Kinetics of isothermal solid state reaction of β-wollastonite synthesis from natural raw materials , 1997 .

[31]  D. Day,et al.  Surface and Internal Crystallization in Glasses as Determined by Differential Thermal Analysis , 1996 .

[32]  D. B. Clarke,et al.  Crystallization of experimental bioactive glass compositions. , 1996, Journal of biomedical materials research.

[33]  P. Villares,et al.  A study of the crystallization kinetics of some Cu-As-Te glasses , 1991 .

[34]  S. Sakka,et al.  Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot , 1980 .

[35]  J. Bennett,et al.  Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method , 1978 .