Exploiting Chordal Structure in Polynomial Ideals: A Gröbner Bases Approach
暂无分享,去创建一个
[1] Gregory V. Bard,et al. Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers , 2007, IACR Cryptol. ePrint Arch..
[2] Jean-Charles Faugère,et al. Polynomial Systems Solving by Fast Linear Algebra , 2013, ArXiv.
[3] Sivan Toledo,et al. Elimination Structures in Scientific Computing , 2004, Handbook of Data Structures and Applications.
[4] S. Parter. The Use of Linear Graphs in Gauss Elimination , 1961 .
[5] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .
[6] Rafael H. Villarreal,et al. Cohen-macaulay graphs , 1990 .
[7] R. Dechter. to Constraint Satisfaction , 1991 .
[8] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[9] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[10] James Demmel,et al. Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials , 2008, SIAM J. Optim..
[11] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .
[12] David J. Spiegelhalter,et al. Local computations with probabilities on graphical structures and their application to expert systems , 1990 .
[13] B. Sturmfels. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[14] Catriel Beeri,et al. On the Desirability of Acyclic Database Schemes , 1983, JACM.
[15] John F. Canny,et al. Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..
[16] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[17] Takayuki Hibi,et al. Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..
[18] J. Okninski,et al. On monomial algebras , 1988, Semigroup Algebras.
[19] Roman Barták,et al. Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.
[20] Jean-Charles Faugère,et al. Sparse Gröbner bases: the unmixed case , 2014, ISSAC.
[21] Arie M. C. A. Koster,et al. Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..
[22] K. Gatemann. Symbolic solution polynomial equation systems with symmetry , 1990, ISSAC '90.
[23] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[24] Jesús A. De Loera,et al. Graph-Coloring Ideals: Nullstellensatz Certificates, Gröbner Bases for Chordal Graphs, and Hardness of Gröbner Bases , 2015, ISSAC.
[25] Sicun Gao May. Counting Zeros over Finite Fields Using Gröbner Bases , 2011 .
[26] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[27] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[28] Martin S. Andersen,et al. Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..
[29] Vwani P. Roychowdhury,et al. Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..
[30] Phokion G. Kolaitis,et al. Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.
[31] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[32] Jesús A. De Loera,et al. Gröbner Bases and Nullstellensätze for Graph-Coloring Ideals , 2014, ArXiv.
[33] T. Y. Li. Numerical solution of multivariate polynomial systems by homotopy continuation methods , 2008 .
[34] Igor A. Semaev,et al. New Technique for Solving Sparse Equation Systems , 2006, IACR Cryptology ePrint Archive.
[35] Rina Dechter,et al. Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.
[36] D. Rose. Triangulated graphs and the elimination process , 1970 .
[37] Vern I. Paulsen,et al. Schur Products and Matrix Completions , 1989 .
[38] Michael Brickenstein,et al. PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials , 2009, J. Symb. Comput..
[39] Blair J R S,et al. Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .
[40] Y. N. Lakshman,et al. On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.
[41] Bruno Courcelle,et al. Graph Structure and Monadic Second-Order Logic: Frontmatter , 2012 .
[42] Timothy A. Davis,et al. A column approximate minimum degree ordering algorithm , 2000, TOMS.
[43] Jesús A. De Loera,et al. Expressing Combinatorial Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz , 2009, Combinatorics, Probability and Computing.
[44] Bruno Courcelle,et al. Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.
[45] Jean-Charles Faugère,et al. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases , 2009, ISSAC '09.
[46] B. Peyton,et al. An Introduction to Chordal Graphs and Clique Trees , 1993 .
[47] Shuhong Gao,et al. OBNER BASIS STRUCTURE OF FINITE SETS OF POINTS , 2003 .
[48] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[49] Matthew J. B. Robshaw,et al. Small Scale Variants of the AES , 2005, FSE.
[50] Christopher J. Hillar,et al. Algebraic characterization of uniquely vertex colorable graphs , 2008, J. Comb. Theory, Ser. B.
[51] Mohab Safey El Din,et al. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..