Exploiting Chordal Structure in Polynomial Ideals: A Gröbner Bases Approach

Chordal structure and bounded treewidth allow for efficient computation in numerical linear algebra, graphical models, constraint satisfaction, and many other areas. In this paper, we begin the study of how to exploit chordal structure in computational algebraic geometry---in particular, for solving polynomial systems. The structure of a system of polynomial equations can be described in terms of a graph. By carefully exploiting the properties of this graph (in particular, its chordal completions), more efficient algorithms can be developed. To this end, we develop a new technique, which we refer to as chordal elimination, that relies on elimination theory and Grobner bases. By maintaining graph structure throughout the process, chordal elimination can outperform standard Grobner bases algorithms in many cases. The reason is because all computations are done on “smaller” rings of size equal to the treewidth of the graph (instead of the total number of variables). In particular, for a restricted class of i...

[1]  Gregory V. Bard,et al.  Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers , 2007, IACR Cryptol. ePrint Arch..

[2]  Jean-Charles Faugère,et al.  Polynomial Systems Solving by Fast Linear Algebra , 2013, ArXiv.

[3]  Sivan Toledo,et al.  Elimination Structures in Scientific Computing , 2004, Handbook of Data Structures and Applications.

[4]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[5]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[6]  Rafael H. Villarreal,et al.  Cohen-macaulay graphs , 1990 .

[7]  R. Dechter to Constraint Satisfaction , 1991 .

[8]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[9]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[10]  James Demmel,et al.  Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials , 2008, SIAM J. Optim..

[11]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[12]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[13]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[14]  Catriel Beeri,et al.  On the Desirability of Acyclic Database Schemes , 1983, JACM.

[15]  John F. Canny,et al.  Efficient Inceremtal Algorithms for the Sparse Resultant and the Mixed Volume , 1995, J. Symb. Comput..

[16]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[17]  Takayuki Hibi,et al.  Binomial edge ideals and conditional independence statements , 2009, Adv. Appl. Math..

[18]  J. Okninski,et al.  On monomial algebras , 1988, Semigroup Algebras.

[19]  Roman Barták,et al.  Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.

[20]  Jean-Charles Faugère,et al.  Sparse Gröbner bases: the unmixed case , 2014, ISSAC.

[21]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[22]  K. Gatemann Symbolic solution polynomial equation systems with symmetry , 1990, ISSAC '90.

[23]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[24]  Jesús A. De Loera,et al.  Graph-Coloring Ideals: Nullstellensatz Certificates, Gröbner Bases for Chordal Graphs, and Hardness of Gröbner Bases , 2015, ISSAC.

[25]  Sicun Gao May Counting Zeros over Finite Fields Using Gröbner Bases , 2011 .

[26]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[27]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[28]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[29]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[30]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[31]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[32]  Jesús A. De Loera,et al.  Gröbner Bases and Nullstellensätze for Graph-Coloring Ideals , 2014, ArXiv.

[33]  T. Y. Li Numerical solution of multivariate polynomial systems by homotopy continuation methods , 2008 .

[34]  Igor A. Semaev,et al.  New Technique for Solving Sparse Equation Systems , 2006, IACR Cryptology ePrint Archive.

[35]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[36]  D. Rose Triangulated graphs and the elimination process , 1970 .

[37]  Vern I. Paulsen,et al.  Schur Products and Matrix Completions , 1989 .

[38]  Michael Brickenstein,et al.  PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials , 2009, J. Symb. Comput..

[39]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[40]  Y. N. Lakshman,et al.  On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.

[41]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic: Frontmatter , 2012 .

[42]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[43]  Jesús A. De Loera,et al.  Expressing Combinatorial Problems by Systems of Polynomial Equations and Hilbert's Nullstellensatz , 2009, Combinatorics, Probability and Computing.

[44]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[45]  Jean-Charles Faugère,et al.  Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases , 2009, ISSAC '09.

[46]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[47]  Shuhong Gao,et al.  OBNER BASIS STRUCTURE OF FINITE SETS OF POINTS , 2003 .

[48]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[49]  Matthew J. B. Robshaw,et al.  Small Scale Variants of the AES , 2005, FSE.

[50]  Christopher J. Hillar,et al.  Algebraic characterization of uniquely vertex colorable graphs , 2008, J. Comb. Theory, Ser. B.

[51]  Mohab Safey El Din,et al.  Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..