Low cycle fatigue life prediction of 63Sn-37Pb solder under proportional and non-proportional loading

Abstract Multiaxial fatigue tests were conducted on 63Sn–37Pb solder specimens under proportional and non-proportional axial/torsional loading. The von Mises equivalent stress and strain are found to be fitted by the Ramberg–Osgood relationship. No additional hardening is observed under non-proportional loading, and the material fails in shear mode. Seven fatigue parameters are evaluated with life data obtained in the tests. It is found that the equivalent strain method overestimates lives under non-proportional loading, and that the maximum shear strain, the Kandil–Brown–Miller and the Fatemi–Socie parameters predict lives within a factor of two, but with a little non-conservatism for non-proportional loading cases. The Socie, Chen–Xu–Huang and Lee–Kim–Nam parameters yield life estimates within a factor of two with slight overall conservatism. The effect on fatigue life of normal strain or stress on the maximum shear strain plane is found rather small for critical plane theories.

[1]  K. J. Miller,et al.  A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions , 1973 .

[2]  H.L.J. Pang,et al.  Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy , 2000 .

[3]  Ali Fatemi,et al.  Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects , 2004 .

[4]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[5]  J. Lau,et al.  Thermal Stress and Strain in Microelectronics Packaging , 1993 .

[6]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[7]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[8]  Daniel Kujawski,et al.  A Multiaxial Fatigue Criterion Including Mean-Stress Effect , 1993 .

[9]  K. S. Kim,et al.  Shear strain based multiaxial fatigue parameters applied to variable amplitude loading , 1999 .

[10]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[11]  S. Manson,et al.  Thermal Stress and Low-Cycle Fatigue , 2020, Encyclopedia of Continuum Mechanics.

[12]  Wei Zhou,et al.  A modified energy-based low cycle fatigue model for eutectic solder alloy , 1999 .

[13]  Fernand Ellyin,et al.  Multiaxial Fatigue Damage Criterion , 1988 .

[14]  Yoshiharu Mutoh,et al.  Strain-rate effects on low cycle fatigue mechanism of eutectic Sn–Pb solder , 2002 .

[15]  K. S. Kim,et al.  fatigue analysis under variable amplitude loading using an energy parameter , 2003 .

[16]  K. Miller,et al.  Fatigue Under Severe Nonproportional Loading , 1985 .

[17]  F. A. Conle,et al.  Multiaxial Stress-Strain Modeling and Fatigue Life Prediction of SAE Axle Shafts , 1993 .

[18]  B. N. Leis,et al.  Low-Cycle Fatigue and Life Prediction , 1982 .

[19]  D. L. McDiarmid,et al.  A SHEAR STRESS BASED CRITICAL‐PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION , 1994 .

[20]  W. Findley A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending , 1959 .

[21]  D. C. Chandler,et al.  High Strain Torsion Fatigue of Solid and Tubular Specimens , 1969 .

[22]  Chao Yu Hung,et al.  Fatigue life estimation under multiaxial loadings , 1999 .

[23]  Y. Mutoh,et al.  Temperature effect on low cycle fatigue behavior of Sn–Pb eutectic solder , 2004 .

[24]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[25]  Xu Chen,et al.  Fatigue life of 63Sn–37Pb solder related to load drop under uniaxial and torsional loading , 2006 .