NEW CHARACTERIZATIONS OF ASYMPTOTIC STABILITY FOR EVOLUTION FAMILIES ON BANACH SPACES

CARI´ C Abstract. We generalize the Datko - Rolewicz theorem on exponential sta- bility in the non-autonomous case. Also, we extend the results obtained by Jan van Neerven (18).

[1]  C. Bennett,et al.  Interpolation of operators , 1987 .

[2]  J.M.A.M. Vanneerven,et al.  Exponential Stability of Operators and Operator Semigroups , 1995 .

[3]  C. Buse,et al.  A Theorem of Rolewicz's Type for Measurable Evolution Families in Banach Spaces , 2001 .

[4]  A Theorem of Rolewicz's type in solid function spaces , 2002, Glasgow Mathematical Journal.

[5]  Interpolation of Linear Operators , 2002 .

[6]  R. Datko,et al.  Uniform Asymptotic Stability of Evolutionary Processes in a Banach Space , 1972 .

[7]  Lower semicontinuity and the theorem of Datko and Pazy , 2002 .

[8]  Yuri Latushkin,et al.  Evolution Semigroups in Dynamical Systems and Differential Equations , 1999 .

[9]  J. Neerven Exponential stability of operators and operator semigroups , 1995 .

[10]  R. Schnaubelt Well-posedness and Asymptotic Behaviour of Non-autonomous Linear Evolution Equations , 2002 .

[11]  C. Buse,et al.  Individual Exponential Stability for Evolution Families of Linear and Bounded Operators , 1999 .

[12]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[13]  Stephen Clark,et al.  Stability Radius and Internal Versus External Stability in Banach Spaces: An Evolution Semigroup Approach , 1998, SIAM J. Control. Optim..

[14]  On uniform N-equistability☆ , 1986 .

[15]  Stefan Rolewicz,et al.  Metric Linear Spaces , 1985 .

[16]  S. Rolewicz Functional Analysis and Control Theory , 1987 .

[17]  Y. Brudnyi,et al.  Interpolation of linear operators , 2002 .

[18]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[19]  Auf der Morgenstelle Exponential Bounds and Hyperbolicity of Evolution Families , 1996 .

[20]  Jan van Neerven,et al.  The Asymptotic Behaviour of Semigroups of Linear Operators , 1996 .

[21]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.