A hybrid Outer-Approximation/Benders Decomposition algorithm for the single allocation hub location problem under congestion

Abstract An efficient procedure that concurrently generates Outer-Approximation and Benders cuts is devised to tackle the single allocation hub location problem under congestion, an MINLP. The proposed method is able to optimally solve large instances (up to 200 nodes) in reasonable time. The combination of both cuts is an algorithmic novelty.

[1]  Morton E. O'Kelly,et al.  Hub location with flow economies of scale , 1998 .

[2]  Samir Elhedhli,et al.  A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion , 2010, INFORMS J. Comput..

[3]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[4]  J. G. Klincewicz,et al.  A dual algorithm for the uncapacitated hub location problem , 1996 .

[5]  Ricardo Saraiva de Camargo,et al.  Benders Decomposition for Hub Location Problems with Economies of Scale , 2009, Transp. Sci..

[6]  Samir Elhedhli,et al.  An interior-point Benders based branch-and-cut algorithm for mixed integer programs , 2010, Annals of Operations Research.

[7]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[8]  Martine Labbé,et al.  A branch and cut algorithm for hub location problems with single assignment , 2005, Math. Program..

[9]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[10]  Leonard Kleinrock,et al.  Communication Nets: Stochastic Message Flow and Delay , 1964 .

[11]  Nikolaos Papadakos,et al.  Practical enhancements to the Magnanti-Wong method , 2008, Oper. Res. Lett..

[12]  Andreas T. Ernst,et al.  Solution algorithms for the capacitated single allocation hub location problem , 1999, Ann. Oper. Res..

[13]  Jamie Ebery,et al.  Solving large single allocation p-hub problems with two or three hubs , 2001, Eur. J. Oper. Res..

[14]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[15]  D. Skorin-Kapov,et al.  Tight linear programming relaxations of uncapacitated p-hub median problems , 1996 .

[16]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[17]  Ricardo Saraiva de Camargo,et al.  Benders decomposition for the uncapacitated multiple allocation hub location problem , 2008, Comput. Oper. Res..

[18]  James F. Campbell,et al.  Integer programming formulations of discrete hub location problems , 1994 .

[19]  Ricardo Saraiva de Camargo,et al.  Addressing congestion on single allocation hub-and-spoke networks , 2012 .

[20]  Andreas T. Ernst,et al.  Efficient algorithms for the uncapac-itated single allocation p-hub median problem , 1996 .

[21]  Sibel A. Alumur,et al.  Network hub location problems: The state of the art , 2008, Eur. J. Oper. Res..

[22]  Andreas T. Ernst,et al.  The capacitated multiple allocation hub location problem: Formulations and algorithms , 2000, Eur. J. Oper. Res..

[23]  Morton E. O'Kelly,et al.  A geographer's analysis of hub-and-spoke networks☆ , 1998 .

[24]  I. Grossmann,et al.  Mixed-integer nonlinear programming techniques for process systems engineering , 1995 .

[25]  Samir Elhedhli,et al.  Hub-and-spoke network design with congestion , 2005, Comput. Oper. Res..

[26]  Ricardo Saraiva de Camargo,et al.  Multiple allocation hub-and-spoke network design under hub congestion , 2009, Comput. Oper. Res..

[27]  David Gillen,et al.  Full Cost of Air Travel in the California Corridor , 1999 .

[28]  Andreas T. Ernst,et al.  Hub location problems , 2002 .