Surface-Based Atlases and a Database of Cortical Structure and Function

===================== Abstract. We have generated surface-based atlases for cerebral and cerebellar cortex in primates (human and macaque) and rodents (rat and mouse). These can be used as substrates for representing and comparing neuroimaging data, cortical partitioning schemes, and many other types of experimental data. Surface-based registration between species facilitates the objective exploration of possible homologies and evolutionary divergences. The Surface Management System (SuMS) database is a repository that is customized for handling the distinctive characteristics of surfacerelated experimental data and for providing easy and flexible options for data entry and retrieval.

[1]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[2]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[3]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.

[4]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[5]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  V. Braitenberg,et al.  Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. , 1993, Journal fur Hirnforschung.

[8]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[9]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[10]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[11]  M. Raichle,et al.  Anatomic Localization and Quantitative Analysis of Gradient Refocused Echo-Planar fMRI Susceptibility Artifacts , 1997, NeuroImage.

[12]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[13]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  W. Singer,et al.  Functional imaging of mirror and inverse reading reveals separate coactivated networks for oculomotion and spatial transformations , 1998, Neuroreport.

[15]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[16]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[17]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[18]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[19]  Abraham Z. Snyder,et al.  Surface-Based Analyses of the Human Cerebral Cortex , 1999 .

[20]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[21]  Stephen H. Koslow,et al.  Should the neuroscience community make a paradigm shift to sharing primary data? , 2000, Nature Neuroscience.

[22]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[23]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[24]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[25]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[26]  J B Woodward,et al.  The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[28]  A. Toga Neuroimage databases: The good, the bad and the ugly , 2002, Nature Reviews Neuroscience.

[29]  Bertram Ludäscher,et al.  A cell-centered database for electron tomographic data. , 2002, Journal of structural biology.

[30]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[31]  Neurosciences,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[32]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[33]  Y. Miyashita,et al.  Functional MRI of Macaque Monkeys Performing a Cognitive Set-Shifting Task , 2002, Science.

[34]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[35]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[36]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[37]  Guy A. Orban,et al.  Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI , 2003, Neuropsychologia.

[38]  S Zeki,et al.  Improbable areas in the visual brain , 2003, Trends in Neurosciences.