Nonuniform cratering of the terrestrial planets

Article history: We estimate the impact flux and cratering rate as a function of latitude on the terrestrial planets using a model distribution of planet crossing asteroids and comets (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., Metcalfe, T.S., 2002. Icarus 156, 399-433). After determining the planetary impact probabilities as a function of the relative encounter velocity and encounter inclination, the impact positions are calculated analytically, assuming the projectiles follow hyperbolic paths during the encounter phase. As the source of projectiles is not isotropic, latitudinal variations of the impact flux are predicted: the calculated ratio between the pole and equator is 1.05 for Mercury, 1.00 for Venus, 0.96 for the Earth, 0.90 for the Moon, and 1.14 for Mars over its long-term obliquity variation history. By taking into account the latitudinal dependence of the impact velocity and impact angle, and by using a crater scaling law that depends on the vertical component of the impact velocity, the latitudinal variations of the cratering rate (the number of craters with a given size formed per unit time and unit area) is in general enhanced. With respect to the equator, the polar cratering rate is about 30% larger on Mars and 10% on Mercury, whereas it is 10% less on the Earth and 20% less on the Moon. The cratering rate is found to be uniform on Venus. The relative global impact fluxes on Mercury, Venus, the Earth and Mars are calculated with respect to the Moon, and we find values of 1.9, 1.8, 1.6, and 2.8, respectively. Our results show that the relative shape of the crater size-frequency distribution does not noticeably depend upon latitude for any of the terrestrial bodies in this study. Nevertheless, by neglecting the expected latitudinal variations of the cratering rate, systematic errors of 20-30% in the age of planetary surfaces could exist between equatorial and polar regions when using the crater chronology method.

[1]  S. Croft Scaling of Complex Craters , 1985 .

[2]  P. Weissman The Oort cloud , 1990, Nature.

[3]  D. Yeomans,et al.  Close encounters and collisions of comets with the earth , 1984 .

[4]  T. Quinn,et al.  A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes , 2004 .

[5]  G. Neukum,et al.  Cratering rate over the surface of a synchronous satellite , 1984 .

[6]  D. Gault,et al.  Experimental studies of oblique impact. , 1978 .

[7]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[8]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[9]  K. Zahnle,et al.  Cratering rates on the Galilean satellites. , 1998, Icarus.

[10]  J. Wisdom,et al.  The Chaotic Obliquity of Mars , 1993, Science.

[11]  J. Laskar Large-scale chaos in the solar system. , 1994 .

[12]  K. Holsapple,et al.  Point source solutions and coupling parameters in cratering mechanics , 1987 .

[13]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[14]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[15]  Robert G. Strom,et al.  The global resurfacing of Venus , 1993 .

[16]  G. W. Wetherill,et al.  Collisions in the asteroid belt , 1967 .

[17]  Takashi Ukai,et al.  Influence of the asymmetrical cratering rate on the lunar cratering chronology , 2005 .

[18]  B. Gladman,et al.  Current Bombardment of the Earth-Moon System: Emphasis on Cratering Asymmetries , 2006, astro-ph/0608373.

[19]  Elisabetta Pierazzo,et al.  A Reevaluation of Impact Melt Production , 1997 .

[20]  David Morrison,et al.  Satellites of Jupiter , 1982 .

[21]  P. Allemand,et al.  Possible long-term decline in impact rates 1. Martian geological data , 2007 .

[22]  Becker,et al.  Lunar impact history from (40)Ar/(39)Ar dating of glass spherules , 2000, Science.

[23]  K. Holsapple,et al.  A crater and its ejecta: An interpretation of Deep Impact , 2007 .

[24]  Tomokatsu Morota,et al.  Asymmetrical distribution of rayed craters on the Moon , 2003 .

[25]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[26]  E. Shoemaker,et al.  Cratering Time Scales for the Galilean Satellites , 1982 .

[27]  Alfred S. McEwen,et al.  Mapping of the Moon by Clementine , 1997 .

[28]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[29]  W. Hartmann,et al.  The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate , 2002 .

[30]  J. S. Stuart,et al.  A Near-Earth Asteroid Population Estimate from the LINEAR Survey , 2001, Science.

[31]  David P. O'Brien,et al.  Craters on asteroids : Reconciling diverse impact records with a common impacting population , 2006 .

[32]  The Origin of Planetary Impactors in the Inner Solar System , 2005, Science.

[33]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[34]  Harold F. Levison,et al.  Dynamical Lifetimes and Final Fates of Small Bodies: Orbit Integrations vs Öpik Calculations , 1999 .

[35]  S. Love,et al.  Interpreting the Elliptical Crater Populations on Mars, Venus, and the Moon , 2000 .

[36]  A. Morbidelli Origin and Evolution of Near Earth Asteroids , 1999 .

[37]  Eugene M. Shoemaker,et al.  ASTEROID AND COMET BOMBARDMENT OF THE EARTH , 1983 .

[38]  A. McEwen,et al.  Galileo observations of post-imbrium lunar craters during the first Eearth-Moon flyby , 1993 .

[39]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[40]  Alfred S. McEwen,et al.  Optical maturity of ejecta from large rayed lunar craters , 2001 .

[41]  R. J. Pike Formation of complex impact craters: Evidence from Mars and other planets , 1980 .

[42]  E. A. Whitaker,et al.  NASA catalogue of lunar nomenclature , 1982 .

[43]  I. Halliday,et al.  A Study of the Relative Rates of Meteorite Falls on the Earth's Surface , 1982 .

[44]  P. Michel,et al.  Earth impact probability of the Asteroid (25143) Itokawa to be sampled by the spacecraft Hayabusa , 2005 .

[45]  J. Laskar Secular evolution of the solar system over 10 million years , 1988 .

[46]  Harold F. Levison,et al.  Differential Cratering of Synchronously Rotating Satellites by Ecliptic Comets , 2001 .

[47]  G. Cremonese,et al.  Flux of meteoroid impacts on Mercury , 2005 .

[48]  William K. Hartmann,et al.  Cratering Records in the Inner Solar System in Relation to the Lunar Reference System , 2001 .

[49]  W. Bottke,et al.  Asteroidal collision probabilities , 1993 .

[50]  Robert Jedicke,et al.  From Magnitudes to Diameters: The Albedo Distribution of Near Earth Objects and the Earth Collision Hazard , 2002 .

[51]  Richard Greenberg Orbital interactions - A new geometrical formalism , 1982 .

[52]  W. Hartmann,et al.  Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history , 2007 .

[53]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[54]  H. Melosh,et al.  Understanding oblique impacts from experiments, observations, and modeling. , 2000, Annual review of earth and planetary sciences.

[55]  Morbidelli,et al.  Origin of multikilometer earth- and mars-crossing asteroids: A quantitative simulation , 1998, Science.

[56]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[57]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[58]  J. S. Stuart,et al.  Observational constraints on the number, albedos, size, and impact hazards of the near-Earth asteroids , 2003 .

[59]  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[60]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[61]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[62]  Raymond E. Arvidson,et al.  Impact craters and Venus resurfacing history , 1992 .