A signaling to p 53 involves the p 19 ARF tumor suppressor

service Email alerting click here top right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the

[1]  F. Zindy,et al.  Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Ken Chen,et al.  The Ink4a Tumor Suppressor Gene Product, p19Arf, Interacts with MDM2 and Neutralizes MDM2's Inhibition of p53 , 1998, Cell.

[3]  Yue Xiong,et al.  ARF Promotes MDM2 Degradation and Stabilizes p53: ARF-INK4a Locus Deletion Impairs Both the Rb and p53 Tumor Suppression Pathways , 1998, Cell.

[4]  Y Taya,et al.  DNA damage induces phosphorylation of the amino terminus of p53. , 1997, Genes & development.

[5]  J. Flint,et al.  Viral transactivating proteins. , 1997, Annual review of genetics.

[6]  Richard A. Ashmun,et al.  Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF , 1997, Cell.

[7]  D. Haber,et al.  Splicing into Senescence: The Curious Case of p16 and p19ARF , 1997, Cell.

[8]  Yoichi Taya,et al.  DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2 , 1997, Cell.

[9]  S. Lowe,et al.  Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Nevins,et al.  Distinct roles for E2F proteins in cell growth control and apoptosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[12]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[13]  P. Branton,et al.  Accumulation of p53 induced by the adenovirus E1A protein requires regions involved in the stimulation of DNA synthesis , 1997, Journal of virology.

[14]  S. Korsmeyer,et al.  bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[16]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[17]  M. Greaves,et al.  Absence of p53 permits propagation of mutant cells following genotoxic damage , 1997, Oncogene.

[18]  P. Howley,et al.  In vivo ubiquitination and proteasome-mediated degradation of p53(1). , 1996, Cancer research.

[19]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[20]  G. Wahl,et al.  A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. , 1996, Genes & development.

[21]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[22]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[23]  N. Hay,et al.  Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. , 1994, Genes & development.

[24]  D. Housman,et al.  p53 status and the efficacy of cancer therapy in vivo. , 1994, Science.

[25]  H. Hermeking,et al.  Mediation of c-Myc-induced apoptosis by p53. , 1994, Science.

[26]  C. Harris,et al.  Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. , 1994, Cancer research.

[27]  T. Graeber,et al.  Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status , 1994, Molecular and cellular biology.

[28]  S. Lowe,et al.  p53-Dependent apoptosis suppresses tumor growth and progression in vivo , 1994, Cell.

[29]  M. Oren,et al.  Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. , 1994, Genes & development.

[30]  D. Housman,et al.  Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.

[32]  David Beach,et al.  p21 is a universal inhibitor of cyclin kinases , 1993, Nature.

[33]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[34]  S. Elledge,et al.  The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases , 1993, Cell.

[35]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[36]  D. Housman,et al.  p53-dependent apoptosis modulates the cytotoxicity of anticancer agents , 1993, Cell.

[37]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[38]  S. Lowe,et al.  Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. , 1993, Genes & development.

[39]  E. White,et al.  Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. , 1993, Genes & development.

[40]  M. Oren,et al.  mdm2 expression is induced by wild type p53 activity. , 1993, The EMBO journal.

[41]  G. Wahl,et al.  Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles , 1992, Cell.

[42]  Thea D. Tlsty,et al.  Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53 , 1992, Cell.

[43]  Gerard I. Evan,et al.  Induction of apoptosis in fibroblasts by c-myc protein , 1992, Cell.

[44]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[45]  B. Vogelstein,et al.  Participation of p53 protein in the cellular response to DNA damage. , 1991, Cancer research.

[46]  A. Levine,et al.  Association of human papillomavirus types 16 and 18 E6 proteins with p53. , 1990, Science.

[47]  H C Hemker,et al.  Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. , 1990, The Journal of biological chemistry.

[48]  K. Münger,et al.  The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. , 1989, Science.

[49]  E. Harlow,et al.  Cellular targets for transformation by the adenovirus E1A proteins , 1989, Cell.

[50]  Wen-Hwa Lee,et al.  SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene , 1988, Cell.

[51]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[52]  H. Ruley,et al.  Two regions of the adenovirus early region 1A proteins are required for transformation , 1988, Journal of virology.

[53]  B. Franza,et al.  Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products , 1985, Journal of virology.

[54]  W. Ross,et al.  DNA double-stranded breaks in mammalian cells after exposure to intercalating agents. , 1981, Biochimica et biophysica acta.

[55]  A. Levine,et al.  Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells , 1979, Cell.

[56]  D. Lane,et al.  T antigen is bound to a host protein in SY40-transformed cells , 1979, Nature.