Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies

[1]  M. Legato Untangling the Gordian Knot of Human Sexuality , 2018, Gender and the Genome.

[2]  Peer Bork,et al.  Extensive impact of non-antibiotic drugs on human gut bacteria , 2018, Nature.

[3]  B. Henrissat,et al.  Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides , 2017, Nature Microbiology.

[4]  Kiran Raosaheb Patil,et al.  Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow , 2017, Cell systems.

[5]  Ronan M. T. Fleming,et al.  Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota , 2016, Nature Biotechnology.

[6]  Daniel H. Geschwind,et al.  The Central Nervous System and the Gut Microbiome , 2016, Cell.

[7]  I-Min A. Chen,et al.  IMG/M: integrated genome and metagenome comparative data analysis system , 2016, Nucleic Acids Res..

[8]  P. Bork,et al.  Human gut microbes impact host serum metabolome and insulin sensitivity , 2016, Nature.

[9]  V. Sperandio,et al.  Interactions between the microbiota and pathogenic bacteria in the gut , 2016, Nature.

[10]  F. Bäckhed,et al.  Diet–microbiota interactions as moderators of human metabolism , 2016, Nature.

[11]  M. Surette,et al.  Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling , 2016, Genome Medicine.

[12]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[13]  A. Margolles,et al.  Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health , 2016, Front. Microbiol..

[14]  E. Segal,et al.  Personalized Nutrition by Prediction of Glycemic Responses , 2015, Cell.

[15]  Kiran Raosaheb Patil,et al.  Metabolic interactions in microbial communities: untangling the Gordian knot. , 2015, Current opinion in microbiology.

[16]  Partho Sen,et al.  Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. , 2015, Cell metabolism.

[17]  L. Tailford,et al.  Mucin glycan foraging in the human gut microbiome , 2015, Front. Genet..

[18]  W. Wade,et al.  Actinomyces and Related Organisms in Human Infections , 2015, Clinical Microbiology Reviews.

[19]  T. Dinan,et al.  Serotonin, tryptophan metabolism and the brain-gut-microbiome axis , 2015, Behavioural Brain Research.

[20]  S. Roberts,et al.  Clinical and Microbiological Characteristics of Eggerthella lenta Bacteremia , 2014, Journal of Clinical Microbiology.

[21]  V. Sperandio,et al.  The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. , 2014, Cell host & microbe.

[22]  Harry J. Flint,et al.  The gut microbiota, bacterial metabolites and colorectal cancer , 2014, Nature Reviews Microbiology.

[23]  M. Sommer,et al.  Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria , 2014, Nature Communications.

[24]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[25]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[26]  H. Brumer,et al.  A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes , 2014, Nature.

[27]  M. Fons,et al.  Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent , 2013, PloS one.

[28]  I-Min A. Chen,et al.  IMG/M 4 version of the integrated metagenome comparative analysis system , 2013, Nucleic Acids Res..

[29]  B. Weimer,et al.  Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens , 2013, Nature.

[30]  P. Bork,et al.  Accurate and universal delineation of prokaryotic species , 2013, Nature Methods.

[31]  L. Gould,et al.  Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010. , 2013, Foodborne pathogens and disease.

[32]  Erin Beck,et al.  TIGRFAMs and Genome Properties in 2013 , 2012, Nucleic Acids Res..

[33]  J. Nicholson,et al.  Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. , 2012, Cell metabolism.

[34]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[35]  A. Macpherson,et al.  Interactions Between the Microbiota and the Immune System , 2012, Science.

[36]  Xin Chen,et al.  dbCAN: a web resource for automated carbohydrate-active enzyme annotation , 2012, Nucleic Acids Res..

[37]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[38]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[39]  Richard A. Moore,et al.  Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. , 2012, Genome research.

[40]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[41]  Tarah Lynch,et al.  Invasive potential of gut mucosa‐derived fusobacterium nucleatum positively correlates with IBD status of the host , 2011, Inflammatory bowel diseases.

[42]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[43]  G. Nava,et al.  Spatial organization of intestinal microbiota in the mouse ascending colon , 2011, The ISME Journal.

[44]  J. Faith,et al.  Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice , 2011, Proceedings of the National Academy of Sciences.

[45]  E. Mcconnell,et al.  Commentary , 2011, Veterinary pathology.

[46]  Michael A McGuckin,et al.  Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria , 2010, The American Journal of Gastroenterology.

[47]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[48]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[49]  Rob Knight,et al.  Identifying genetic determinants needed to establish a human gut symbiont in its habitat. , 2009, Cell host & microbe.

[50]  D. Block,et al.  Development of Chemically Defined Media Supporting High-Cell-Density Growth of Lactococci, Enterococci, and Streptococci , 2008, Applied and Environmental Microbiology.

[51]  W. D. de Vos,et al.  Characterization of the Role of para-Aminobenzoic Acid Biosynthesis in Folate Production by Lactococcus lactis , 2007, Applied and Environmental Microbiology.

[52]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[53]  H. Harmsen,et al.  Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. , 2002, International journal of systematic and evolutionary microbiology.

[54]  I. Booth,et al.  Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. , 2002, Microbiology.

[55]  P. Clifton,et al.  Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. , 2001, Physiological reviews.

[56]  Cook Si,et al.  Review article: short chain fatty acids in health and disease , 1998 .

[57]  J. Hardcastle,et al.  Measurement of gastrointestinal pH profiles in normal ambulant human subjects. , 1988, Gut.

[58]  J. Guardiola,et al.  Growth inhibition as a consequence of antagonism between related amino acids: effect of valine in Escherichia coli K-12 , 1979, Microbiological reviews.

[59]  M. J. Allison Production of branched-chain volatile fatty acids by certain anaerobic bacteria , 1978, Applied and environmental microbiology.

[60]  R. S. Conrad,et al.  Branched-chain amino acid catabolism in bacteria. , 1976, Bacteriological reviews.

[61]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[62]  D. Hentges Influence of pH on the inhibitory activity of formic and acetic acids for Shigella , 1967, Journal of bacteriology.

[63]  O. Bergeim Toxicity of Intestinal Volatile Fatty Acids for Yeast and Esch. Coli , 1940 .

[64]  M. Nyman Short-chain fatty acids in health and disease : Effects of dietary components , 2013 .

[65]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010, Nature Protocols.

[66]  J. N. Lopes,et al.  Chemically defined media for growing anaerobic bacteria of the genus Veillonella , 2004, Antonie van Leeuwenhoek.

[67]  M. J. Teixeira de Mattos,et al.  Replacement of potassium ions by ammonium ions in different micro-organisms grown in potassium-limited chemostat culture , 2004, Archives of Microbiology.

[68]  M. Sebald,et al.  Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants. , 1975, Applied microbiology.