X-Ray-rich Gamma-Ray Bursts, Photospheres, and Variability

We investigate the relationship between the quasi-thermal baryon-related photosphere in relativistic outflows and the internal shocks arising outside them, which out to a limiting radius may be able to create enough pairs to extend the optically thick region. Variable gamma-ray light curves are likely to arise outside this limiting pair-forming shock radius, while X-ray excess bursts may arise from shocks occurring below it; a possible relation to X-ray flashes is discussed. This model leads to a simple physical interpretation of the observational gamma-ray variability-luminosity relation.

[1]  E. Ramirez-Ruiz,et al.  On the Spectral Energy Dependence of Gamma-Ray Burst Variability , 2002, astro-ph/0205127.

[2]  E. Ramirez-Ruiz,et al.  Beam models for gamma-ray bursts sources: outflow structure, kinematics and emission mechanisms , 2002, astro-ph/0203447.

[3]  Jay D. Salmonson,et al.  Discovery of a Tight Correlation between Pulse Lag/Luminosity and Jet-Break Times: A Connection between Gamma-Ray Bursts and Afterglow Properties , 2001, astro-ph/0112298.

[4]  Bing Zhang,et al.  Gamma-Ray Burst Beaming: A Universal Configuration with a Standard Energy Reservoir? , 2001, astro-ph/0112118.

[5]  M. Rees,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2001, astro-ph/0112083.

[6]  Usra,et al.  X-ray flashes and X-ray rich Gamma Ray Bursts , 2001, astro-ph/0111246.

[7]  T. Piran,et al.  The Energy of Long-Duration Gamma-Ray Bursts , 2001 .

[8]  A. Panaitescu,et al.  Fundamental Physical Parameters of Collimated Gamma-Ray Burst Afterglows , 2001, astro-ph/0108045.

[9]  Takashi S. Nakamura,et al.  Peak Luminosity-Spectral Lag Relation Caused by the Viewing Angle of the Collimated Gamma-Ray Bursts , 2001, astro-ph/0105321.

[10]  S. Djorgovski,et al.  Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir , 2001, astro-ph/0102282.

[11]  R. Plaga The cepheid-like relationship between variability and luminosity explained within the "cannonball model"of gamma-ray bursts , 2000, astro-ph/0012060.

[12]  Chicago,et al.  A Possible Cepheid-like Luminosity Estimator for the Long Gamma-Ray Bursts , 2000, astro-ph/0004302.

[13]  E. Ramirez-Ruiz,et al.  Pulse Width Evolution in Gamma-Ray Bursts: Evidence for Internal Shocks , 1999, astro-ph/9910273.

[14]  R. Preece,et al.  The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data , 1999, astro-ph/9908119.

[15]  P. Mészáros,et al.  Analysis of Temporal Features of Gamma-Ray Bursts in the Internal Shock Model , 1999, astro-ph/9908097.

[16]  M. Rees,et al.  Steep Slopes and Preferred Breaks in Gamma-Ray Burst Spectra: The Role of Photospheres and Comptonization , 1999 .

[17]  P. Mészáros,et al.  Power Density Spectra of Gamma-Ray Bursts in the Internal Shock Model , 1999, astro-ph/9905026.

[18]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[19]  G. Ghisellini,et al.  Quasi-thermal Comptonization and Gamma-Ray Bursts , 1998, astro-ph/9812079.

[20]  R. Svensson,et al.  Self-Similar Temporal Behavior of Gamma-Ray Bursts , 1998, astro-ph/9807139.

[21]  R. Preece,et al.  BATSE Observations of Gamma-Ray Burst Spectra. III. Low-Energy Behavior of Time-averaged Spectra , 1996 .

[22]  R. Svensson Non-thermal pair production in compact X-ray sources: first-order Compton cascades in soft radiation fields , 1987 .

[23]  M. Rees,et al.  Spectral and variability constraints on compact sources , 1983 .