Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes.

Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.

[1]  David P. Landau,et al.  Computer Simulation Studies in Condensed-Matter Physics VIII , 1995 .

[2]  Thomas F. Miller,et al.  Quantum diffusion in liquid para-hydrogen from ring-polymer molecular dynamics. , 2005, The Journal of chemical physics.

[3]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[4]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[5]  Hans De Raedt,et al.  Applications of the generalized Trotter formula , 1983 .

[6]  David S. Sholl,et al.  Adsorption and separation of hydrogen isotopes in carbon nanotubes: Multicomponent grand canonical Monte Carlo simulations , 2002 .

[7]  Reiter,et al.  Measurement of interionic potentials in solids using deep-inelastic neutron scattering. , 1985, Physical review letters.

[8]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[9]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[10]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[11]  M. Ricci,et al.  Proton dynamics in supercritical water , 2001 .

[12]  S. Imberti,et al.  Proton momentum distribution of liquid water from room temperature to the supercritical phase. , 2008, Physical review letters.

[13]  Momentum-distribution spectroscopy using deep inelastic neutron scattering , 1999, cond-mat/9904095.

[14]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[15]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[16]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[17]  Michele Parrinello,et al.  Displaced path integral formulation for the momentum distribution of quantum particles. , 2010, Physical review letters.

[18]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[19]  Joseph A Morrone,et al.  Proton momentum distribution in water: an open path integral molecular dynamics study. , 2007, The Journal of chemical physics.

[20]  M. Shiga,et al.  Efficient ab initio path integral hybrid Monte Carlo based on the fourth-order Trotter expansion: Application to fluoride ion-water cluster. , 2010, The Journal of chemical physics.

[21]  R. W. Hall,et al.  A Path Integral Monte Carlo Study of Liquid Neon and the Quantum Effective Pair Potential , 1984 .

[22]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[23]  Alejandro Pérez,et al.  A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. , 2009, The Journal of chemical physics.

[24]  Michele Parrinello,et al.  Efficient and general algorithms for path integral Car–Parrinello molecular dynamics , 1996 .

[25]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[26]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[27]  J. Boronat,et al.  High order Chin actions in path integral Monte Carlo. , 2009, The Journal of chemical physics.

[28]  Thomas F. Miller,et al.  Quantum diffusion in liquid water from ring polymer molecular dynamics. , 2005, The Journal of chemical physics.

[29]  M. Parrinello,et al.  The nature and transport mechanism of hydrated hydroxide ions in aqueous solution , 2002, Nature.

[30]  P M Platzman,et al.  Anomalous behavior of proton zero point motion in water confined in carbon nanotubes. , 2006, Physical review letters.

[31]  Pierre-Nicholas Roy,et al.  A Feynman path centroid dynamics approach for the computation of time correlation functions involving nonlinear operators , 2000 .

[32]  Siu A. Chin,et al.  Symplectic integrators from composite operator factorizations , 1997 .

[33]  C. Burnham,et al.  On the origin of the redshift of the OH stretch in Ice Ih: evidence from the momentum distribution of the protons and the infrared spectral density. , 2006, Physical chemistry chemical physics : PCCP.

[34]  Masatoshi Imada,et al.  Monte Carlo Calculation of Quantum Systems. II. Higher Order Correction , 1984 .

[35]  G. Arrighini,et al.  More on the quantum propagator of a particle in a linear potential , 1996 .

[36]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[37]  Roberto Car,et al.  Nuclear quantum effects in water. , 2008, Physical review letters.

[38]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[39]  Mark E. Tuckerman,et al.  A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters , 1999 .

[40]  Renato Colle,et al.  Approximate calculation of the correlation energy for the closed shells , 1975 .

[41]  Soonmin Jang,et al.  Applications of higher order composite factorization schemes in imaginary time path integral simulations , 2001 .

[42]  C. Chakravarty,et al.  An ab initio path integral Monte Carlo simulation method for molecules and clusters: Application to Li4 and Li5+ , 1998, physics/9802020.

[43]  Wei Zhang,et al.  An accurate and simple quantum model for liquid water. , 2006, The Journal of chemical physics.

[44]  Seogjoo J. Jang,et al.  A relationship between centroid dynamics and path integral quantum transition state theory , 2000 .

[45]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[46]  Mark E. Tuckerman,et al.  Exploiting multiple levels of parallelism in Molecular Dynamics based calculations via modern techniques and software paradigms on distributed memory computers , 2000 .

[47]  Mark E. Tuckerman,et al.  Molecular dynamics algorithms for path integrals at constant pressure , 1999 .

[48]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[49]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[50]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[51]  Pollock,et al.  Path-integral computation of the low-temperature properties of liquid 4He. , 1986, Physical review letters.

[52]  M. Klein,et al.  An ab initio path integral molecular dynamics study of double proton transfer in the formic acid dimer , 1998 .

[53]  P. Platzman,et al.  Direct Observation of Tunnelling in KDP Using Neutron Compton Scattering , 2002, Physical review letters.

[54]  D. Sebastiani,et al.  The Isotope-Effect in the Phase Transition of KH(2)PO(4): New Insights from Ab Initio Path-Integral Simulations , 2011 .

[55]  Jorge Kohanoff,et al.  Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods , 2006 .

[56]  David E Manolopoulos,et al.  On the short-time limit of ring polymer molecular dynamics. , 2006, The Journal of chemical physics.

[57]  Takeshi Yamamoto,et al.  Path-integral virial estimator based on the scaling of fluctuation coordinates: application to quantum clusters with fourth-order propagators. , 2005, The Journal of chemical physics.

[58]  Jürg Hutter,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2009 .

[59]  Alejandro Pérez,et al.  Enol tautomers of Watson-Crick base pair models are metastable because of nuclear quantum effects. , 2010, Journal of the American Chemical Society.

[60]  G. Norman,et al.  The Monte-Carlo method in Feynman's formulation of quantum statistics☆ , 1973 .

[61]  Nikos L. Doltsinis,et al.  Quantum Simulations of complex many-body systems:from theory to algorithms , 2002 .

[62]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. III. Phase space formalism and analysis of centroid molecular dynamics , 1994 .

[63]  Ian R. Craig,et al.  Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. , 2004, The Journal of chemical physics.

[64]  M. Tuckerman,et al.  Ab initio molecular dynamics: concepts, recent developments, and future trends. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Parrinello,et al.  Solvated excess protons in water: quantum effects on the hydration structure , 2000 .

[66]  J. Johnson,et al.  Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure , 2007 .

[67]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[68]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[69]  Jianshu Cao,et al.  A new perspective on quantum time correlation functions , 1993 .

[70]  J. Q. Broughton,et al.  High-order correction to the Trotter expansion for use in computer simulation , 1987 .

[71]  Johannes M. Mayrhofer,et al.  Extrapolated high-order propagators for path integral Monte Carlo simulations. , 2009, The Journal of chemical physics.

[72]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[73]  M. Klein,et al.  Hydrogen bonding in water. , 2003, Physical review letters.

[74]  H. Trotter On the product of semi-groups of operators , 1959 .

[75]  Qinyu Wang,et al.  Path integral grand canonical Monte Carlo , 1997 .

[76]  M. Tuckerman,et al.  Heavy-atom skeleton quantization and proton tunneling in "intermediate-barrier" hydrogen bonds. , 2001, Physical review letters.