Functional Data Analysis in Shape Analysis

Mid-level processes on images often return outputs in functional form. In this context the use of functional data analysis (FDA) in image analysis is considered. In particular, attention is focussed on shape analysis, where the use of FDA in the functional approach (contour functions) shows its superiority over other approaches, such as the landmark based approach or the set theory approach, on two different problems (principal component analysis and discriminant analysis) in a well-known database of bone outlines. Furthermore, a problem that has hardly ever been considered in the literature is dealt with: multivariate functional discrimination. A discriminant function based on independent component analysis for indicating where the differences between groups are and what their level of discrimination is, is proposed. The classification results obtained with the methodology are very promising. Finally, an analysis of hippocampal differences in Alzheimer's disease is carried out.

[1]  Michael I. Miller,et al.  Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging☆ , 2003, NeuroImage.

[2]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[3]  Irene Epifanio,et al.  Shape Descriptors for Classification of Functional Data , 2008, Technometrics.

[4]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[5]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[6]  Rob J Hyndman,et al.  Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .

[7]  L. Shepstone,et al.  The shape of the distal femur: a palaeopathological comparison of eburnated and non-eburnated femora , 1999, Annals of the rheumatic diseases.

[8]  Geoffrey J McLachlan,et al.  Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  lberto,et al.  NUCLEI SHAPE ANALYSIS , A STATISTICAL APPROACH , 2008 .

[10]  Martin Styner,et al.  Boundary and Medial Shape Analysis of the Hippocampus in Schizophrenia , 2003, MICCAI.

[11]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[12]  Jeng-Min Chiou,et al.  Identifying cluster number for subspace projected functional data clustering , 2011, Comput. Stat. Data Anal..

[13]  R. Petersen Mild cognitive impairment as a diagnostic entity , 2004, Journal of internal medicine.

[14]  L. Shepstone,et al.  Distribution of distal femoral osteophytes in a human skeletal population , 2000, Annals of the rheumatic diseases.

[15]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[16]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[17]  Frédéric Ferraty,et al.  Locally modelled regression and functional data , 2010 .

[18]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[19]  J. R. Koehler,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[20]  Florentina Bunea,et al.  Functional classification in Hilbert spaces , 2005, IEEE Transactions on Information Theory.

[21]  M. Baulac,et al.  MR determination of hippocampal volume: comparison of three methods. , 1996, AJNR. American journal of neuroradiology.

[22]  Marcela Svarc,et al.  Principal components for multivariate functional data , 2011 .

[23]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[24]  P. Vieu,et al.  k-Nearest Neighbour method in functional nonparametric regression , 2009 .

[25]  Graham W. Horgan,et al.  Principal Component Analysis of Random Particles , 2000, Journal of Mathematical Imaging and Vision.

[26]  Esther de Ves,et al.  Quantifying Mean Shape and Variability of Footprints Using Mean Sets , 2005, ISMM.

[27]  Juan Romo,et al.  A half-region depth for functional data , 2011, Comput. Stat. Data Anal..

[28]  Irene Epifanio,et al.  Multivariate Functional Data Discrimination Using ICA: Analysis of Hippocampal Differences in Alzheimer's Disease , 2008 .

[29]  Lei Xu,et al.  The MSE reconstruction criterion for independent component ordering in ICA timeseries analysis , 1999, NSIP.

[30]  Bin Li,et al.  Classification of functional data: A segmentation approach , 2008, Comput. Stat. Data Anal..

[31]  Wenceslao González-Manteiga,et al.  Statistics for Functional Data , 2007, Comput. Stat. Data Anal..

[32]  Esther de Ves,et al.  Resuming Shapes with Applications , 2004, Journal of Mathematical Imaging and Vision.

[33]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[34]  E. Oja,et al.  Independent Component Analysis , 2013 .

[35]  L. Ferré,et al.  Multilayer Perceptron with Functional Inputs: an Inverse Regression Approach , 2006, 0705.0211.

[36]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[37]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[38]  Fabrice Rossi,et al.  Support Vector Machine For Functional Data Classification , 2006, ESANN.

[39]  William G. Cochran,et al.  Contributions to statistics , 1983 .

[40]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[41]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[42]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[43]  Pedro Delicado,et al.  Dimensionality reduction when data are density functions , 2011, Comput. Stat. Data Anal..

[44]  Ricardo Vigário,et al.  Overlearning in Marginal Distribution-Based ICA: Analysis and Solutions , 2003, J. Mach. Learn. Res..

[45]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[46]  F. Ferraty,et al.  The Oxford Handbook of Functional Data Analysis , 2011, Oxford Handbooks Online.

[47]  Brian D. Marx,et al.  Generalized Linear Regression on Sampled Signals and Curves: A P-Spline Approach , 1999, Technometrics.

[48]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[49]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[50]  C. Jack,et al.  Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment , 1999, Neurology.

[51]  Volodymyr V. Kindratenko,et al.  On Using Functions to Describe the Shape , 2003, Journal of Mathematical Imaging and Vision.

[52]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[53]  N. Schuff,et al.  MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer’s disease , 2001, Neurology.

[54]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[55]  F Andermann,et al.  Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging , 1992, Neurology.

[56]  C. Jack,et al.  Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. , 2004, Archives of neurology.

[57]  Fabrice Rossi,et al.  Functional multi-layer perceptron: a non-linear tool for functional data analysis , 2007, Neural Networks.