Large Volume Minimizers of a Nonlocal Isoperimetric Problem: Theoretical and Numerical Approaches

We consider the volume-constrained minimization of the sum of the perimeter and the Riesz potential. We add an external potential of the form $\|{x}\|^\beta$ that provides the existence of a minimizer for any volume constraint, and we study the geometry of large volume minimizers. Then we provide a numerical method to address this variational problem.

[1]  Rustum Choksi,et al.  Ground-states for the liquid drop and TFDW models with long-range attraction , 2017, 1707.06674.

[2]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[3]  Rupert L. Frank,et al.  Nonexistence of Large Nuclei in the Liquid Drop Model , 2016, 1604.03231.

[4]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[5]  Felix Otto,et al.  Nonexistence of a Minimizer for Thomas–Fermi–Dirac–von Weizsäcker Model , 2014 .

[6]  Alessio Figalli,et al.  Isoperimetry and Stability Properties of Balls with Respect to Nonlocal Energies , 2014, Communications in Mathematical Physics.

[7]  Marco Bonacini,et al.  Local and Global Minimality Results for a Nonlocal Isoperimetric Problem on ℝN , 2013, SIAM J. Math. Anal..

[8]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[9]  Mark A. Peletier,et al.  Small Volume-Fraction Limit of the Diblock Copolymer Problem: II. Diffuse-Interface Functional , 2010, SIAM J. Math. Anal..

[10]  Rustum Choksi,et al.  Droplet breakup in the liquid drop model with background potential , 2017, Communications in Contemporary Mathematics.

[11]  C. Muratov,et al.  On an Isoperimetric Problem with a Competing Nonlocal Term II: The General Case , 2012, 1206.7078.

[12]  C. Muratov,et al.  On an Isoperimetric Problem with a Competing Nonlocal Term I: The Planar Case , 2011, 1109.2192.

[13]  Andrea Braides Gamma-Convergence for Beginners , 2002 .