Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science.

Controlling the temporal mode shape of quantum light pulses has wide ranging application to quantum information science and technology. Techniques have been developed to control the bandwidth, allow shifting in the time and frequency domains, and perform mode-selective beam-splitter-like transformations. However, there is no present scheme to perform targeted multimode unitary transformations on temporal modes. Here we present a practical approach to realize general transformations for temporal modes. We show theoretically that any unitary transformation on temporal modes can be performed using a series of phase operations in the time and frequency domains. Numerical simulations show that several key transformations on temporal modes can be performed with greater than 95% fidelity using experimentally feasible specifications.

[1]  Christine Silberhorn,et al.  Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings , 2018, 1803.04316.

[2]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[3]  Brian J. Smith,et al.  Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings. , 2016, Optics express.

[4]  Yu-Ping Huang,et al.  Mode-resolved photon counting via cascaded quantum frequency conversion. , 2012, Optics letters.

[5]  Christine Silberhorn,et al.  A quantum pulse gate based on spectrally engineered sum frequency generation. , 2010, Optics express.

[6]  C. Silberhorn,et al.  Fibre assisted single photon spectrograph , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[7]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[8]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[9]  Xiang Guo,et al.  Integrated optomechanical single-photon frequency shifter , 2016, Nature Photonics.

[10]  A. M. Weinera Femtosecond pulse shaping using spatial light modulators , 2000 .

[11]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[12]  Xi Chen,et al.  100-GHz Low Voltage Integrated Lithium Niobate Modulators , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[13]  Val Zwiller,et al.  Hybrid integrated quantum photonic circuits , 2020, Nature Photonics.

[14]  Z. I. Borevich,et al.  Subgroups of the unitary group that contain the group of diagonal matrices , 1981 .

[15]  Peter C Humphreys,et al.  Continuous-variable quantum computing in optical time-frequency modes using quantum memories. , 2014, Physical review letters.

[16]  High-dimensional unitary transformations and boson sampling on temporal modes using dispersive optics , 2015, 1505.03103.

[17]  B. Brecht,et al.  Photon temporal modes: a complete framework for quantum information science , 2015, 1504.06251.

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  M. Fejer,et al.  Multidimensional mode-separable frequency conversion for high-speed quantum communication , 2016, 1606.07794.

[21]  K. Goda,et al.  Dispersive Fourier transformation for fast continuous single-shot measurements , 2013, Nature Photonics.

[22]  A. Weiner Ultrafast optical pulse shaping: A tutorial review , 2011 .

[23]  Michael G. Raymer,et al.  Photonic temporal-mode multiplexing by quantum frequency conversion in a dichroic-finesse cavity. , 2017, Optics express.

[24]  Brian J. Smith,et al.  Spectral Shearing of Quantum Light Pulses by Electro-Optic Phase Modulation. , 2016, Physical review letters.

[25]  Fabio Sciarrino,et al.  Integrated photonic quantum technologies , 2019, Nature Photonics.

[26]  Xiaoguang Wang,et al.  An alternative quantum fidelity for mixed states of qudits , 2008, 0807.1781.

[27]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[28]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[29]  M. Rötteler,et al.  Decomposing a matrix into circulant and diagonal factors , 2000 .

[30]  Brian J. Smith,et al.  Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. , 2013, Optics express.

[31]  M. Karpiński,et al.  Large-scale spectral bandwidth compression by complex electro-optic temporal phase modulation. , 2018, Optics express.

[32]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[33]  B. Kolner,et al.  Temporal imaging with a time lens. , 1989, Optics letters.

[35]  M. Raymer,et al.  High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry , 2018 .

[36]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[37]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.