Random planar lattices and integrated superBrownian excursion

Abstract.In this paper, a surprising connection is described between a specific brand of random lattices, namely planar quadrangulations, and Aldous’ Integrated SuperBrownian Excursion (ISE). As a consequence, the radius rn of a random quadrangulation with n faces is shown to converge, up to scaling, to the width r=R−L of the support of the one-dimensional ISE, or precisely: More generally the distribution of distances to a random vertex in a random quadrangulation is described in its scaled limit by the random measure ISE shifted to set the minimum of its support in zero. The first combinatorial ingredient is an encoding of quadrangulations by trees embedded in the positive half-line, reminiscent of Cori and Vauquelin’s well labelled trees. The second step relates these trees to embedded (discrete) trees in the sense of Aldous, via the conjugation of tree principle, an analogue for trees of Vervaat’s construction of the Brownian excursion from the bridge. From probability theory, we need a new result of independent interest: the weak convergence of the encoding of a random embedded plane tree by two contour walks to the Brownian snake description of ISE. Our results suggest the existence of a Continuum Random Map describing in term of ISE the scaled limit of the dynamical triangulations considered in two-dimensional pure quantum gravity.

[1]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[2]  Gordon Slade,et al.  The Scaling Limit of Lattice Trees in High Dimensions , 1998 .

[3]  R. Cori,et al.  Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.

[4]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[5]  S. Weinberg,et al.  Two-dimensional Quantum Gravity and random surfaces , 1992 .

[6]  J. Jurkiewicz,et al.  Observing 4d baby universes in quantum gravity , 1993, hep-th/9303041.

[7]  E. Bender,et al.  0-1 Laws for Maps , 1999, Random Struct. Algorithms.

[8]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[9]  Nicholas C. Wormald,et al.  The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.

[10]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[11]  Gilles Schaeffer Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .

[12]  Amir Dembo,et al.  Large Deviations for Random Distribution of Mass , 1996 .

[13]  Bergfinnur Durhuus,et al.  Quantum Geometry: A Statistical Field Theory Approach , 1997 .

[14]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[15]  Remco van der Hofstad,et al.  Mean-field lattice trees , 1999 .

[16]  G. Parisi,et al.  Planar diagrams , 1978 .

[17]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[18]  Jean-François Delmas,et al.  Computation of Moments for the Length of the OneDimensional ISE Support , 2003 .

[19]  Gordon Slade,et al.  The incipient infinite cluster in high-dimensional percolation , 1998 .

[20]  A. Mokkadem,et al.  States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake , 2003 .

[21]  A. Shiryayev On Sums of Independent Random Variables , 1992 .

[22]  Sadao Sugitani Some properties for the measure-valued branching diffusion processes , 1989 .

[23]  D. Gross,et al.  Two dimensional quantum gravity and random surfaces : Jerusalem Winter School for Theoretical Physics, Jerusalem, Israel, 27 Dec. 90 - 4 Jan. 91 , 1992 .

[24]  Une bijection simple pour les cartes orientables , 2001 .

[25]  Edward A. Bender,et al.  Face sizes of 3-polytopes , 1989, J. Comb. Theory, Ser. B.

[26]  S. Mathur,et al.  World-sheet geometry and baby universes in 2D quantum gravity , 1992, hep-th/9204017.

[27]  D. Arquès Rooted planar maps are well labeled trees , 1986 .

[28]  Philippe Flajolet,et al.  Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.

[29]  Laurent Serlet A large deviation principle for the Brownian snake , 1997 .

[30]  Didier Arquès Les hypercartes planaires sont des arbres tres bien etiquetes , 1986, Discret. Math..

[31]  W. D. Kaigh An Invariance Principle for Random Walk Conditioned by a Late Return to Zero , 1976 .

[32]  Jim Pitman,et al.  Enumerations of trees and forests related to branching processes and random walks , 1997, Microsurveys in Discrete Probability.

[33]  David Aldous,et al.  Tree-based models for random distribution of mass , 1993 .

[34]  Nicholas C. Wormald,et al.  Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.

[35]  Scaling in quantum gravity , 1995, hep-th/9501049.