Random planar lattices and integrated superBrownian excursion
暂无分享,去创建一个
[1] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[2] Gordon Slade,et al. The Scaling Limit of Lattice Trees in High Dimensions , 1998 .
[3] R. Cori,et al. Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.
[4] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.
[5] S. Weinberg,et al. Two-dimensional Quantum Gravity and random surfaces , 1992 .
[6] J. Jurkiewicz,et al. Observing 4d baby universes in quantum gravity , 1993, hep-th/9303041.
[7] E. Bender,et al. 0-1 Laws for Maps , 1999, Random Struct. Algorithms.
[8] L. Rogers,et al. Diffusions, Markov processes, and martingales , 1979 .
[9] Nicholas C. Wormald,et al. The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.
[10] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[11] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[12] Amir Dembo,et al. Large Deviations for Random Distribution of Mass , 1996 .
[13] Bergfinnur Durhuus,et al. Quantum Geometry: A Statistical Field Theory Approach , 1997 .
[14] J. L. Gall,et al. Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .
[15] Remco van der Hofstad,et al. Mean-field lattice trees , 1999 .
[16] G. Parisi,et al. Planar diagrams , 1978 .
[17] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[18] Jean-François Delmas,et al. Computation of Moments for the Length of the OneDimensional ISE Support , 2003 .
[19] Gordon Slade,et al. The incipient infinite cluster in high-dimensional percolation , 1998 .
[20] A. Mokkadem,et al. States Spaces of the Snake and Its Tour—Convergence of the Discrete Snake , 2003 .
[21] A. Shiryayev. On Sums of Independent Random Variables , 1992 .
[22] Sadao Sugitani. Some properties for the measure-valued branching diffusion processes , 1989 .
[23] D. Gross,et al. Two dimensional quantum gravity and random surfaces : Jerusalem Winter School for Theoretical Physics, Jerusalem, Israel, 27 Dec. 90 - 4 Jan. 91 , 1992 .
[24] Une bijection simple pour les cartes orientables , 2001 .
[25] Edward A. Bender,et al. Face sizes of 3-polytopes , 1989, J. Comb. Theory, Ser. B.
[26] S. Mathur,et al. World-sheet geometry and baby universes in 2D quantum gravity , 1992, hep-th/9204017.
[27] D. Arquès. Rooted planar maps are well labeled trees , 1986 .
[28] Philippe Flajolet,et al. Random maps, coalescing saddles, singularity analysis, and Airy phenomena , 2001, Random Struct. Algorithms.
[29] Laurent Serlet. A large deviation principle for the Brownian snake , 1997 .
[30] Didier Arquès. Les hypercartes planaires sont des arbres tres bien etiquetes , 1986, Discret. Math..
[31] W. D. Kaigh. An Invariance Principle for Random Walk Conditioned by a Late Return to Zero , 1976 .
[32] Jim Pitman,et al. Enumerations of trees and forests related to branching processes and random walks , 1997, Microsurveys in Discrete Probability.
[33] David Aldous,et al. Tree-based models for random distribution of mass , 1993 .
[34] Nicholas C. Wormald,et al. Almost All Maps Are Asymmetric , 1995, J. Comb. Theory, Ser. B.
[35] Scaling in quantum gravity , 1995, hep-th/9501049.