3D printing technologies for electrochemical energy storage

[1]  Chee Kai Chua,et al.  Emerging 3D‐Printed Electrochemical Energy Storage Devices: A Critical Review , 2017 .

[2]  Tianyu Liu,et al.  3D printed functional nanomaterials for electrochemical energy storage , 2017 .

[3]  E. Toyserkani,et al.  Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes , 2017 .

[4]  Rebecca Dylla-Spears,et al.  3D‐Printed Transparent Glass , 2017, Advanced materials.

[5]  W. Wang,et al.  3D direct writing fabrication of electrodes for electrochemical storage devices , 2017 .

[6]  W. Bauer,et al.  Three-dimensional printing of transparent fused silica glass , 2017, Nature.

[7]  Ming-Chuan Leu,et al.  A hybrid three-dimensionally structured electrode for lithium-ion batteries via 3D printing , 2017 .

[8]  Feng Zhang,et al.  Parameter Study of Three-Dimensional Printing Graphene Oxide Based on Directional Freezing , 2017 .

[9]  Ananth Dodabalapur,et al.  Inkjet-Printed Lithium-Sulfur Microcathodes for All-Printed, Integrated Nanomanufacturing. , 2017, Small.

[10]  Hang Zhou,et al.  3D Printing of Carbon Nanotubes-Based Microsupercapacitors. , 2017, ACS applied materials & interfaces.

[11]  D. Pech,et al.  Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. , 2017, Nature nanotechnology.

[12]  S. Lanceros‐Méndez,et al.  Computer simulation evaluation of the geometrical parameters affecting the performance of two dimensional interdigitated batteries , 2016 .

[13]  Khairul Amilin Ibrahim,et al.  Electrical conductivity and porosity in stainless steel 316L scaffolds for electrochemical devices fabricated using selective laser sintering , 2016 .

[14]  Fei Liu,et al.  Pristine Graphene Aerogels by Room‐Temperature Freeze Gelation , 2016, Advanced materials.

[15]  Sang-Young Lee,et al.  All-inkjet-printed, solid-state flexible supercapacitors on paper , 2016 .

[16]  Y. Gogotsi,et al.  Synthesis of Two‐Dimensional Materials for Capacitive Energy Storage , 2016, Advanced materials.

[17]  Yang Hui Ying New generation 3D printed on-chip energy storage devices , 2016, 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC).

[18]  N. J. Smeenk,et al.  Flexible shielding layers for solar cells in space applications , 2016 .

[19]  Jinbao Guo,et al.  Fabrication of highly conductive graphene flexible circuits by 3D printing , 2016 .

[20]  Jiangtao Hu,et al.  3D‐Printed Cathodes of LiMn1−xFexPO4 Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithium‐Ion Battery , 2016 .

[21]  Lai-fei Cheng,et al.  The applications of carbon nanotubes and graphene in advanced rechargeable lithium batteries , 2016 .

[22]  Yi Xie,et al.  A zwitterionic gel electrolyte for efficient solid-state supercapacitors , 2016, Nature Communications.

[23]  Qifa Zhou,et al.  Three dimensional printing of high dielectric capacitor using projection based stereolithography method , 2016 .

[24]  Tian Li,et al.  Graphene Oxide‐Based Electrode Inks for 3D‐Printed Lithium‐Ion Batteries , 2016, Advanced materials.

[25]  Feng Zhang,et al.  3D Printing of Graphene Aerogels. , 2016, Small.

[26]  Martin Pumera,et al.  Helical 3D‐Printed Metal Electrodes as Custom‐Shaped 3D Platform for Electrochemical Devices , 2016 .

[27]  Fang Qian,et al.  Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores. , 2016, Nano letters.

[28]  A. Sastry,et al.  Geometric consideration of nanostructures for energy storage systems , 2016 .

[29]  Z. Eckel,et al.  Additive manufacturing of polymer-derived ceramics , 2016, Science.

[30]  Feng Zhang,et al.  3D stereolithography printing of graphene oxide reinforced complex architectures , 2015, Nanotechnology.

[31]  Yang Zhao,et al.  Oxygen-containing Functional Groups Enhancing Electrochemical Performance of Porous Reduced Graphene Oxide Cathode in Lithium Ion Batteries , 2015 .

[32]  Dominique Guyomard,et al.  Ink-jet printed porous composite LiFePO4 electrode from aqueous suspension for microbatteries , 2015 .

[33]  Wei Jiang,et al.  3D Printable Graphene Composite , 2015, Scientific Reports.

[34]  Zheng Hu,et al.  Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing , 2015 .

[35]  Rong Cheng,et al.  Laminated fabrication of 3D queue micro-electrode and its application in micro-EDM , 2015 .

[36]  Alexandra M. Golobic,et al.  Highly compressible 3D periodic graphene aerogel microlattices , 2015, Nature Communications.

[37]  Hua Zhang,et al.  Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. , 2015, ACS nano.

[38]  Eduardo Saiz,et al.  Printing in Three Dimensions with Graphene , 2015, Advanced materials.

[39]  Chee Kai Chua,et al.  Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors , 2015 .

[40]  Weijie Liu,et al.  Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink , 2015 .

[41]  Cristina Fernandez,et al.  Cyborg beast: a low-cost 3d-printed prosthetic hand for children with upper-limb differences , 2015, BMC Research Notes.

[42]  Dominique Guyomard,et al.  Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries , 2015 .

[43]  Woo Y. Lee,et al.  Inkjet-Printed Flexible Graphene-Based Supercapacitor , 2014 .

[44]  Hong Liu,et al.  Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. , 2014, Nanoscale.

[45]  Wenjie Mai,et al.  Flexible solid-state electrochemical supercapacitors , 2014 .

[46]  Namjo Jeong,et al.  Direct printing and reduction of graphite oxide for flexible supercapacitors , 2014 .

[47]  R. Mülhaupt,et al.  3D Micro‐Extrusion of Graphene‐based Active Electrodes: Towards High‐Rate AC Line Filtering Performance Electrochemical Capacitors , 2014 .

[48]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[49]  Yi Zheng,et al.  Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism , 2014, Scientific Reports.

[50]  Stephen Beirne,et al.  Three dimensional (3D) printed electrodes for interdigitated supercapacitors , 2014 .

[51]  Ryan B. Wicker,et al.  3D Printing for the Rapid Prototyping of Structural Electronics , 2014, IEEE Access.

[52]  M. Schwab,et al.  Inkjet-printed energy storage device using graphene/polyaniline inks , 2014 .

[53]  T. Nam,et al.  Electrochemical properties of an as-deposited LiFePO4 thin film electrode prepared by aerosol deposition , 2013 .

[54]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[55]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[56]  Zhiqiang Niu,et al.  All‐Solid‐State Flexible Ultrathin Micro‐Supercapacitors Based on Graphene , 2013, Advanced materials.

[57]  Michael C. McAlpine,et al.  3D Printed Bionic Ears , 2013, Nano letters.

[58]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[59]  Zheng Yan,et al.  3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. , 2013, Nano letters.

[60]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[61]  Akira Izumi,et al.  Development of high capacity lithium-ion battery applying three-dimensionally patterned electrode , 2012 .

[62]  Andreas Winter,et al.  Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors , 2012, Advanced materials.

[63]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[64]  Lei Wang,et al.  Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[65]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[66]  J. Akedo,et al.  Preparation of Lithium Aluminum Titanium Phosphate Electrolytes Thick Films by Aerosol Deposition Method , 2011 .

[67]  Chunlei Wang,et al.  Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes , 2011 .

[68]  Bruce Dunn,et al.  Three-dimensional electrodes and battery architectures , 2011 .

[69]  B. Liu,et al.  Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources , 2011 .

[70]  Woo Y. Lee,et al.  Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide , 2011 .

[71]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[72]  Y. Shao-horn,et al.  Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors , 2011 .

[73]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[74]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[75]  James W. Evans,et al.  Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte , 2010 .

[76]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[77]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[78]  B. Derby Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution , 2010 .

[79]  R. Ruoff,et al.  Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition , 2010 .

[80]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[81]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[82]  Daniel A. Steingart,et al.  A super ink jet printed zinc–silver 3D microbattery , 2009 .

[83]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[84]  J. Czyżewski,et al.  Rapid prototyping of electrically conductive components using 3D printing technology , 2009 .

[85]  N. Kotov,et al.  Automated spin-assisted layer-by-layer assembly of nanocomposites. , 2009, The Review of scientific instruments.

[86]  Norbert Fabre,et al.  Fabrication of Activated Carbon Electrodes by Inkjet Deposition , 2009, 2009 Third International Conference on Quantum, Nano and Micro Technologies.

[87]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[88]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[89]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[90]  Zhiyu Jiang,et al.  Electrochemical properties of LiCoO2 thin film electrode prepared by ink-jet printing technique , 2008 .

[91]  Sylvain Deville,et al.  Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues , 2008, 1710.04201.

[92]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[93]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[94]  Ning Pan,et al.  Supercapacitors using carbon nanotubes films by electrophoretic deposition , 2006 .

[95]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[96]  Jae-Hong Kim,et al.  Fabrication and electrochemical properties of carbon nanotube film electrodes , 2006 .

[97]  Zhiyu Jiang,et al.  A novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries , 2006 .

[98]  M. Brett,et al.  Investigation of thin sputtered Mn films for electrochemical capacitors , 2004 .

[99]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[100]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[101]  R. Reddy,et al.  Sol–gel MnO2 as an electrode material for electrochemical capacitors , 2003 .

[102]  Zhiyu Jiang,et al.  Preparing ultra-thin nano-MnO2 electrodes using computer jet-printing method , 2003 .

[103]  Young Soo Yoon,et al.  Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films , 2001 .

[104]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .