Modélisation logique de la langue et Grammaires Catégorielles Abstraites. (Logical modelization of language and Abstract Categorial Grammars)

Cette these s'interesse a la modelisation de la syntaxe et de l'interface syntaxe-semantique de la phrase, et explore la possibilite de controler au niveau des structures de derivation la surgeneration que produit le traitement des dependances a distance par des types d'ordre superieur. A cet effet, nous etudions la possibilite d'etendre le systeme de typage des Grammaires Categorielles Abstraites avec les constructions de la somme disjointe, du produit cartesien et du produit dependant, permettant d'etiqueter les categories syntaxiques par des structures de traits. Nous prouvons dans un premier temps que le calcul resultant de cette extension beneficie des proprietes de confluence et de normalisation, permettant d'identifier les termes beta-equivalents dans le formalisme grammatical. Nous reduisons de plus le meme probleme pour la beta-eta-equivalence a un ensemble d'hypothese de depart. Dans un second temps, nous montrons comment cette introduction de structures de traits peut etre appliquee au controle des dependances a distances, a travers les exemples des contraintes de cas, des ilots d'extraction pour les mouvements explicites et implicites, et des extractions interrogatives multiples, et nous discutons de la pertinence de placer ces controles sur les structures de derivation

[1]  Mark Johnson Proof Nets and the Complexity of Processing Center Embedded Constructions , 1998, J. Log. Lang. Inf..

[2]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[3]  Felix Joachimski Syntactic analysis of eta-expansions in Pure Type Systems , 2003, Inf. Comput..

[4]  Frank Pfenning,et al.  A Linear Logical Framework , 2002, Inf. Comput..

[5]  Edward P. Stabler,et al.  Derivational Minimalism , 1996, LACL.

[6]  Ekaterina Lebedeva,et al.  Expression de la dynamique du discours à l'aide de continuations , 2012 .

[7]  Gilles Barthe,et al.  Existence and Uniqueness of Normal Forms in Pure Type Systems with βη-conversion , 1999 .

[8]  Sylvain Pogodalla,et al.  On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms , 2004, J. Log. Lang. Inf..

[9]  Hendrik Pieter Barendregt,et al.  Introduction to generalized type systems , 1991, Journal of Functional Programming.

[10]  Philippe de Groote,et al.  Tree-Adjoining Grammars as Abstract Categorial Grammars , 2002, TAG+.

[11]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[12]  Sylvain Salvati,et al.  Minimalist Grammars in the Light of Logic , 2011, Logic and Grammar.

[13]  Makoto Kanazawa,et al.  Parsing and Generation as Datalog Queries , 2007, ACL.

[14]  Stuart M. Shieber Unifying Synchronous Tree Adjoining Grammars and Tree Transducers via Bimorphisms , 2006, EACL.

[15]  Sylvain Pogodalla,et al.  On the Syntax-Semantics Interface: From Convergent Grammar to Abstract Categorial Grammar , 2009, WoLLIC.

[16]  Joachim Lambek,et al.  On the Calculus of Syntactic Types , 1961 .

[17]  Sylvain Salvati,et al.  Problèmes de filtrage et problème d'analyse pour les grammaires catégorielles abstraites. (Matching problem and parsing problem for abstract categorial grammars) , 2005 .

[18]  Sylvain Pogodalla,et al.  Advances in Abstract Categorial Grammars: Language Theory and Linguistic Modeling. ESSLLI 2009 Lecture Notes, Part II , 2009 .

[19]  Yusuke Kubota,et al.  Phonological Interpretation into Preordered Algebras , 2009, MOL.

[20]  R. Muskens Separating Syntax and Combinatorics in Categorial Grammar , 2007 .

[21]  Ryo Yoshinaka,et al.  The Complexity and Generative Capacity of Lexicalized Abstract Categorial Grammars , 2005, LACL.

[22]  Chung-chieh Shan,et al.  Delimited continuations in natural language: quantification and polarity sensitivity , 2004, ArXiv.

[23]  Gilles Barthe Expanding the Cube , 1999, FoSSaCS.

[24]  Sylvain Pogodalla,et al.  About Parallel and Syntactocentric Formalisms: A Perspective from the Encoding of Convergent Grammar into Abstract Categorial Grammar , 2011, Fundam. Informaticae.

[25]  Yoad Winter,et al.  Quantifier Scope in Formal Linguistics , 2011 .

[26]  Gilles Barthe Existence and Uniqueness of Normal Forms in Pure Type Systems with betaeta-Conversion , 1998, CSL.

[27]  Sam Lindley,et al.  Extensional Rewriting with Sums , 2007, TLCA.

[28]  Sylvain Pogodalla,et al.  Generalizing a Proof-Theoretic Account of Scope Ambiguity , 2007 .

[29]  Frank Pfenning,et al.  A linear logical framework , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[30]  Noam Chomsky,et al.  On Wh-Movement , 1977 .

[31]  Christian Retoré,et al.  A Faithful Representation of Non-Associative Lambek Grammars in Abstract Categorial Grammars , 2010, J. Log. Lang. Inf..

[32]  Philippe de Groote,et al.  Towards Abstract Categorial Grammars , 2001, ACL.

[33]  Sylvain Pogodalla,et al.  m-Linear Context-Free Rewriting Systems as Abstract Categorial Grammars , 2003 .

[34]  Vedrana Mihalicek,et al.  Serbo-Croatian Word Order: A Logical Approach. , 2012 .

[35]  C. Barker Continuations and the Nature of Quantification , 2002 .

[36]  Robin Hayes Cooper,et al.  MONTAGUE'S SEMANTIC THEORY AND TRANSFORMATIONAL SYNTAX. , 1975 .

[37]  J. Zwart The Minimalist Program , 1998, Journal of Linguistics.

[38]  Stephan Oepen,et al.  39th Annual Meeting and 10th Conference of the European Chapter , 2001 .

[39]  Philippe de Groote,et al.  Type-theoretic extensions of Abstract Categorial Grammars , 2007 .

[40]  Yehoshua Bar-Hillel,et al.  Language and Information , 1964 .

[41]  Mati Pentus,et al.  Lambek grammars are context free , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[42]  Roberto Di Cosmo,et al.  Extensional normalisation and type-directed partial evaluation for typed lambda calculus with sums , 2004, POPL.

[43]  Mario Piazza,et al.  Linguistic Applications of First Order Intuitionistic Linear Logic , 2001, J. Log. Lang. Inf..

[44]  Neil Ghani Eta-Expansions in Dependent Type Theory - The Calculus of Constructions , 1997, TLCA.

[45]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[46]  M. Moortgat Generalized quantifiers and discontinuous type constructors , 1996 .

[47]  Aravind K. Joshi,et al.  Tree-Adjoining Grammars , 1997, Handbook of Formal Languages.

[48]  Sylvain Pogodalla Computing Semantic Representation: Towards ACG Abstract Terms as Derivation Trees , 2004, TAG+.

[49]  Glyn Morrill,et al.  Incremental processing and acceptability , 2000, CL.

[50]  Aarne Ranta Computational semantics in type theory , 2004 .

[51]  R. Bernardi Scope ambiguities through the mirror , 2010 .

[52]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[53]  Y. Bar-Hillel A Quasi-Arithmetical Notation for Syntactic Description , 1953 .

[54]  R. Montague Formal philosophy; selected papers of Richard Montague , 1974 .

[55]  Gilles Dowek,et al.  The Undecidability of Typability in the Lambda-Pi-Calculus , 1993, TLCA.

[56]  Gerald Gazdar,et al.  Unbounded Dependencies and Coordinate Structure , 1981 .

[57]  Ryo Yoshinaka,et al.  On Two Extensions of Abstract Categorial Grammars , 2007, LPAR.

[58]  Richard Moot,et al.  The Logic of Categorial Grammars , 2012, Lecture Notes in Computer Science.

[59]  J. Girard,et al.  Proofs and types , 1989 .

[60]  Yehoshua Bar-Hillel,et al.  Language and information : selected essays on their theory and application , 1965 .

[61]  Joel M. Cohen The Equivalence of Two Concepts of Categorical Grammar , 1967, Inf. Control..