\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Aut}}({\mathbb {F}}_5)$$\end{document}Aut(F5) has property (T)
暂无分享,去创建一个
[1] Alexander Lubotzky,et al. Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.
[2] H. Nagao,et al. Representations of Finite Groups , 1989, Group Theory for Physicists.
[3] S. Gersten. A presentation for the special automorphism group of a free group , 1984 .
[4] N. Ozawa. NONCOMMUTATIVE REAL ALGEBRAIC GEOMETRY OF KAZHDAN’S PROPERTY (T) , 2013, Journal of the Institute of Mathematics of Jussieu.
[5] S. Popa. Some rigidity results for non-commutative Bernoulli shifts☆ , 2006 .
[6] D. M. Ocampo-Giraldo. A time-expanded network for the biomedical sample transportation problem , 2020 .
[7] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[8] W. Magnus,et al. Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations , 1966 .
[9] A. Neumaier,et al. Computer-assisted proofs , 2006, 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006).
[10] Angelos Koutsianas,et al. Computing All Elliptic Curves Over an Arbitrary Number Field with Prescribed Primes of Bad Reduction , 2015, Exp. Math..
[11] Stephen P. Boyd,et al. Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding , 2013, Journal of Optimization Theory and Applications.
[12] Martin R Bridson,et al. Automorphism groups of free groups, surface groups and free abelian groups , 2005, math/0507612.
[13] O. Bogopolski,et al. Subgroups of Small Index in Aut(Fn) and Kazhdan's Property (T) , 2010 .
[14] Alexander Schrijver,et al. Invariant Semidefinite Programs , 2010, 1007.2905.
[15] Alain Valette,et al. Kazhdan's Property (T): List of symbols , 2008 .
[16] Yoshihiro Kanno,et al. A numerical algorithm for block-diagonal decomposition of matrix $${*}$$-algebras with application to semidefinite programming , 2010 .
[17] Etienne de Klerk,et al. Numerical block diagonalization of matrix *-algebras with application to semidefinite programming , 2011, Math. Program..
[18] Tim Netzer,et al. Kazhdan’s Property (T) via Semidefinite Optimization , 2015, Exp. Math..
[19] Konrad Schmuedgen. Noncommutative Real Algebraic Geometry Some Basic Concepts and First Ideas , 2009 .
[20] Linear Representations of the Automorphism Group of a Free Group , 2006, math/0606182.
[21] Marek Kaluba,et al. Certifying numerical estimates of spectral gaps , 2017, Groups Complex. Cryptol..
[22] G. Jameson. Ordered Linear Spaces , 1970 .
[23] Igor Pak,et al. The product replacement algorithm and Kazhdan’s property (T) , 2000 .
[24] Juan Luis Varona,et al. Complex networks and decentralized search algorithms , 2006 .
[25] O. Kharlampovich,et al. Combinatorial and Geometric Group Theory , 2010 .
[26] Jean-Pierre Serre,et al. Linear representations of finite groups , 1977, Graduate texts in mathematics.
[27] Alain Valette,et al. Kazhdan's Property (T): KAZHDAN'S PROPERTY (T) , 2008 .
[28] Iain Dunning,et al. JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..
[29] James McCool,et al. A faithful polynomial representation of Out F3 , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] Martin Kassabov,et al. Symmetric groups and expander graphs , 2005 .
[31] Koji Fujiwara,et al. Computing Kazhdan Constants by Semidefinite Programming , 2019, Exp. Math..
[32] Mikhail Ershov,et al. Property (T) for noncommutative universal lattices , 2008, 0809.4095.
[33] Robert H. Gilman. Finite quotients of the automorphism group of a free group , 1977 .