Deterministic transition of enterotypes shapes the infant gut microbiome at an early age

[1]  Xiaoqing Li,et al.  Deterministic transition of enterotypes shapes the infant gut microbiome at an early age , 2021, Genome Biology.

[2]  John C. Earls,et al.  Longitudinal analysis reveals transition barriers between dominant ecological states in the gut microbiome , 2020, Proceedings of the National Academy of Sciences.

[3]  J. Carlin,et al.  Gut microbiota composition during infancy and subsequent behavioural outcomes , 2020, EBioMedicine.

[4]  E. Purdom,et al.  Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics , 2020, Nature Communications.

[5]  W. D. de Vos,et al.  The Gut Microbiota in the First Decade of Life. , 2019, Trends in microbiology.

[6]  E. Sanders,et al.  Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life , 2019, Nature Communications.

[7]  G. Dantas,et al.  Metagenomic signatures of early life hospitalization and antibiotic treatment in the infant gut microbiota and resistome persist long after discharge , 2019, Nature Microbiology.

[8]  Michael J. Barratt,et al.  A sparse covarying unit that describes healthy and impaired human gut microbiota development , 2019, Science.

[9]  E. Halperin,et al.  FEAST: fast expectation-maximization for microbial source tracking , 2019, Nature Methods.

[10]  Y. Watanabe,et al.  Gut microbiota development of preterm infants hospitalised in intensive care units. , 2019, Beneficial microbes.

[11]  A. Manges,et al.  The Human Microbiome and Child Growth - First 1000 Days and Beyond. , 2019, Trends in microbiology.

[12]  H. Wen,et al.  Feeding intolerance alters the gut microbiota of preterm infants , 2019, PloS one.

[13]  Junhua Li,et al.  Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children , 2019, Microbiome.

[14]  Philipp C. Münch,et al.  Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life , 2018, Nature Microbiology.

[15]  Anders F. Andersson,et al.  Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential , 2018, Nature Communications.

[16]  S. Rampelli,et al.  Microbial Community Dynamics in Mother’s Milk and Infant’s Mouth and Gut in Moderately Preterm Infants , 2018, Front. Microbiol..

[17]  R. Gibbs,et al.  Temporal development of the gut microbiome in early childhood from the TEDDY study , 2018, Nature.

[18]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[19]  G. Dantas,et al.  Diet and Maternal Gestational Weight Gain Predict Metabolic Maturation of Infant Gut Microbiomes , 2018, Nature Medicine.

[20]  Duy Tin Truong,et al.  Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome , 2018, Cell host & microbe.

[21]  P. Trosvik,et al.  Individuality and convergence of the infant gut microbiota during the first year of life , 2018, Nature Communications.

[22]  F. Zhao,et al.  Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus , 2018, Gut.

[23]  Scott M. Williams,et al.  The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth , 2018, Pediatric Research.

[24]  Yu He,et al.  16S Ribosomal RNA-based Gut Microbiome Composition Analysis in Infants with Breast Milk Jaundice , 2018, Open life sciences.

[25]  M. Surette,et al.  Ethnic and diet-related differences in the healthy infant microbiome , 2017, Genome Medicine.

[26]  Duy Tin Truong,et al.  Microbial strain-level population structure and genetic diversity from metagenomes , 2017, Genome research.

[27]  E. Dempsey,et al.  Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort , 2017, Microbiome.

[28]  F. Ausubel,et al.  Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants , 2016, Microbiome.

[29]  Hui Shen,et al.  Composition of gut microbiota in infants in China and global comparison , 2016, Scientific Reports.

[30]  Mingbang Wang,et al.  Diversity of Gut Microbiota Metabolic Pathways in 10 Pairs of Chinese Infant Twins , 2016, PloS one.

[31]  Fangqing Zhao,et al.  Phage-bacteria interaction network in human oral microbiome. , 2016, Environmental microbiology.

[32]  Takuji Yamada,et al.  A key genetic factor for fucosyllactose utilization affects infant gut microbiota development , 2016, Nature Communications.

[33]  Duy Tin Truong,et al.  MetaPhlAn2 for enhanced metagenomic taxonomic profiling , 2015, Nature Methods.

[34]  Christine L. Sun,et al.  Temporal and spatial variation of the human microbiota during pregnancy , 2015, Proceedings of the National Academy of Sciences.

[35]  J. V. van Elsas,et al.  Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession , 2015, Proceedings of the National Academy of Sciences.

[36]  Qunyuan Zhang,et al.  Persistent Gut Microbiota Immaturity in Malnourished Bangladeshi Children , 2014, Nature.

[37]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[38]  T. R. Licht,et al.  Establishment of Intestinal Microbiota during Early Life: a Longitudinal, Explorative Study of a Large Cohort of Danish Infants , 2014, Applied and Environmental Microbiology.

[39]  T. R. Licht,et al.  Microbial Enterotypes, Inferred by the Prevotella-to-Bacteroides Ratio, Remained Stable during a 6-Month Randomized Controlled Diet Intervention with the New Nordic Diet , 2013, Applied and Environmental Microbiology.

[40]  A. Konopka,et al.  Quantifying community assembly processes and identifying features that impose them , 2013, The ISME Journal.

[41]  Connor T. Skennerton,et al.  Crass: identification and reconstruction of CRISPR from unassembled metagenomic data , 2013, Nucleic acids research.

[42]  I. Tirosh,et al.  CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome , 2012, Genome research.

[43]  A. Konopka,et al.  Stochastic and deterministic assembly processes in subsurface microbial communities , 2012, The ISME Journal.

[44]  C. Quince,et al.  Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics , 2012, PloS one.

[45]  S. Kembel,et al.  Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities , 2011 .

[46]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[47]  Jonathan M. Chase,et al.  Using null models to disentangle variation in community dissimilarity from variation in α‐diversity , 2011 .

[48]  J. Doré,et al.  Intestinal Microbiota of 6-week-old Infants Across Europe: Geographic Influence Beyond Delivery Mode, Breast-feeding, and Antibiotics , 2010, Journal of pediatric gastroenterology and nutrition.

[49]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[50]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[51]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[52]  Campbell O. Webb,et al.  Phylogenies and Community Ecology , 2002 .

[53]  Falk Hildebrand,et al.  Enterotypes in the landscape of gut microbial community composition , 2017, Nature Microbiology.

[54]  Christopher E. McKinlay,et al.  Rethinking "enterotypes". , 2014, Cell host & microbe.

[55]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.