Boundary layer flow of a second grade fluid with variable heat flux at the wall

We study the boundary layer (stagnation) flow of a second grade fluid, with a prescribed variable heat flux at the wall. The flow is assumed to be steady and laminar. The governing equations are solved using an iterative central difference approximation method in a non-uniform grid domain. The effects of the non-Newtonian nature of the fluid and the heat flux parameter on the thermal boundary layer are also presented.

[1]  K. Rajagopal,et al.  Natural convection flow of a non-Newtonian fluid between two vertical flat plates , 1985 .

[2]  K. Rajagopal,et al.  On a class of exact solutions to the equations of motion of a second grade fluid , 1981 .

[3]  Kumbakonam R. Rajagopal,et al.  An Introduction to the Mechanics of Fluids , 1999 .

[4]  M. Ramezan,et al.  Effect of injection or suction on the Falkner-Skan flows of second grade fluids , 1989 .

[5]  Hari M. Srivastava,et al.  Some boundary-layer growth problems associated with a flat plate with suction or injection , 2001, Appl. Math. Comput..

[6]  W. Banks,et al.  Further properties of the Falkner-Skan equation , 1987 .

[7]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[8]  V. Garg Non‐Newtonian flow over a wedge with suction , 1992 .

[9]  J. Gross,et al.  Exact Similar Solutions of the Laminar Boundary-Layer Equations , 1967 .

[10]  Asai Asaithambi,et al.  A finite-difference method for the Falkner-Skan equation , 1998, Appl. Math. Comput..

[11]  N. Riley,et al.  Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary , 1989 .

[12]  H. Schlichting Boundary Layer Theory , 1955 .

[13]  Abinash Chandra Srivastava,et al.  The flow of a non-Newtonian liquid near a stagnation point , 1958 .

[14]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[15]  J. Peddieson,et al.  Viscoelastic boundary-layer flows past wedges and cones , 1980 .

[16]  Mehmet Pakdemirli,et al.  Boundary layer flow of power-law fluids past arbitrary profiles , 1993 .

[17]  M. Massoudi Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge , 2001 .

[18]  V. M. F. B.Sc.,et al.  LXXXV. Solutions of the boundary-layer equations , 1931 .

[19]  Kumbakonam R. Rajagopal,et al.  ON A BOUNDARY LAYER THEORY FOR NON-NEWTONIAN FLUIDS , 1980 .

[20]  Conjugate heat transfer of a triangular fin in the flow of a second-grade fluid , 1998 .

[21]  P. Duck,et al.  Boundary–layer flow along a ridge: alternatives to the Falkner–Skan solutions , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Ganjam K. Rajeswari,et al.  Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point , 1962 .

[23]  J. Dorrepaal,et al.  Viscoelastic fluid flow impinging on a wall with suction or blowing , 1993 .

[24]  J. Tichy,et al.  The effect of an additional boundary condition on the plane creeping flow of a second-order fluid , 1989 .

[25]  T. Sarpkaya,et al.  Stagnation point flow of a second-order viscoelastic fluid , 1971 .

[26]  Heat transfer from flow of an elastico-viscous fluid , 1989 .

[27]  Heat transfer in a second order viscoelastic boundary layer flow at a stagnation point , 1980 .

[28]  J. E. Dunn,et al.  Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .

[29]  N. S. Asaithambi,et al.  A numerical method for the solution of the Falkner-Skan equation , 1997 .

[30]  Kumbakonam R. Rajagopal,et al.  A note on the falkner-skan flows of a non-newtonian fluid , 1983 .

[31]  M. Massoudi,et al.  Heat transfer analysis of a viscoelastic fluid at a stagnation point , 1992 .

[32]  P. Kaloni Some remarks on «Useful theorems for the second order fluid» , 1989 .

[33]  Effect of injection on the flow of second order fluid in the inlet region of a channel , 1979 .

[34]  Vijay K. Garg,et al.  Flow of a non-Newtonian fluid past a wedge , 1991 .

[35]  D. W. Beard,et al.  Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.