A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium
暂无分享,去创建一个
C. Spencer | K. Davis | P. Visscher | N. Wray | M. Daly | D. Pinto | S. Scherer | J. Sebat | D. Rujescu | S. Cichon | O. Pietiläinen | T. Hansen | I. Giegling | A. Hartmann | J. Lonnqvist | J. Suvisaari | T. Paunio | E. Bramon | R. Murray | S. Djurovic | I. Melle | N. Freimer | O. Andreassen | R. Ophoff | M. Rietschel | T. Werge | M. Nöthen | D. Collier | D. Clair | G. Kirov | J. Lieberman | T. Schulze | M. Gill | N. Craddock | M. Owen | M. O’Donovan | L. DeLisi | P. Sullivan | D. Levy | D. Merico | C. Marshall | Zhouzhi Wang | J. Buxbaum | R. Cantor | S. Mccarroll | V. Salomaa | M. Bertalan | Jianxin Shi | J. Hirschhorn | R. Buckner | J. Os | B. Neale | M. Hamshere | P. Holmans | A. Price | J. Waddington | R. Kahn | W. Cahn | S. Purcell | R. McCarley | W. Maier | V. Haroutunian | J. Smoller | I. Agartz | J. Roffman | A. McIntosh | J. Mallet | M. Cairns | R. Scott | P. Tooney | A. Palotie | A. Metspalu | T. Esko | L. Milani | P. Sklar | D. Blackwood | A. Corvin | C. Hultman | A. McQuillin | C. Pato | D. Ruderfer | D. Morris | C. O'Dushlaine | E. Scolnick | N. Williams | V. Milanova | J. Pimm | S. Thirumalai | D. Quested | D. Curtis | M. Pato | A. Fanous | J. Knowles | M. Fromer | J. Friedman | P. Michie | Yunjung Kim | C. Pantelis | K. Kendler | D. Posthuma | L. Seidman | T. Stroup | D. Perkins | E. Stahl | D. Levinson | J. Powell | M. Keller | I. Nenadić | E. Gershon | G. Papadimitriou | J. Karjalainen | P. Magnusson | T. Pers | J. Eriksson | L. Franke | J. Crowley | A. Pocklington | S. Bacanu | F. Henskens | C. Mcdonald | M. Davidson | R. Mesholam-Gately | B. Crespo-Facorro | O. Mors | Wei Cheng | K. Murphy | J. Veijola | C. R. Cloninger | P. Mortensen | A. Børglum | D. Hougaard | H. Rasmussen | M. Mattheisen | E. Strengman | E. Jönsson | D. Campion | B. Müller-Myhsok | F. Dudbridge | B. Lerer | J. Kennedy | J. Goldstein | D. Howrigan | S. Ripke | Qingqin S. Li | J. Moran | D. Antaki | Madhusudan Gujral | B. Riley | T. Dinan | S. Lee | B. Thiruvahindrapuram | E. Parkhomenko | F. O’Neill | B. Webb | D. Walsh | E. Domenici | I. Myin-Germeys | G. Nestadt | E. Drapeau | Kai-How Farh | B. Maher | J. Szatkiewicz | B. Bulik-Sullivan | G. Genovese | L. Essioux | A. Jablensky | Phil H. Lee | M. Ikeda | G. Donohoe | M. Mattingsdal | A. Reichenberg | M. Farrell | J. Duan | A. Sanders | P. Gejman | P. Hoffmann | A. Darvasi | T. Petryshen | A. Pulver | A. Kähler | Sarah L Bergen | Stephanie Williams | P. Cormican | A. Richards | J. Walters | C. Laurent | B. Mowry | S. Schwab | D. Wildenauer | M. Albus | M. Alexander | D. Cohen | D. Dikeos | P. Eichhammer | S. Godard | M. Hansen | K. Liang | D. Nertney | J. Silverman | B. Wormley | L. Kalaydjieva | D. Demontis | E. Agerbo | R. Belliveau | M. Hollegaard | Hailiang Huang | P. Roussos | D. Black | Sang-Yun Oh | V. Escott-Price | D. Svrakic | A. Olincy | L. Haan | N. Carrera | S. Legge | S. Witt | F. Degenhardt | A. Forstner | J. Atkins | S. Herms | J. Wu | V. Carr | C. Loughland | U. Schall | W. Byerley | M. Weiser | M. Reimers | S. Meier | N. Iwata | T. Bigdeli | P. Giusti-Rodríguez | Douglas S Greer | Wenting Wu | E. Söderman | E. O'callaghan | L. Nisenbaum | K. Nicodemus | R. Freedman | J. Strohmaier | H. Gurling | F. Amin | R. Bruggeman | N. Buccola | J. Frank | L. Georgieva | B. Konte | L. Olsen | Elizabeth Bevilacqua | Guiqing Cai | S. Catts | K. Chambert | J. Gratten | A. Hofman | I. Joa | D. Kavanagh | C. Meijer | Y. Mokrab | A. Nordin | A. Wolen | C. Zai | R. Adolfsson | J. Knight | A. Savitz | W. Brandler | B. Kelly | Aniket Shetty | Dheeraj Malholtra | K. V. F. Fajarado | J. D. Favero | Danny Antaki | S. Williams | C. O’Dushlaine | K. Farh | J. Eriksson | C. Cloninger | Paola Giusti-Rodríguez | R. Murray | J. Eriksson | Annelie Nordin | R. Scott | Marcelo Bertalan | R. Scott | A. Price | Madeline Alexander | J. Walters | Elodie Drapeau | C. Spencer | J. Kennedy | R. Scott | J. Powell | M. Hansen | Douglas S. Greer | Karin V. Fuentes Fajarado | I. Myin‐Germeys
[1] P. Sullivan,et al. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. , 2003, Archives of general psychiatry.
[2] E. Roeder,et al. Clinical characterization of int22h1/int22h2-mediated Xq28 duplication/deletion: new cases and literature review , 2015, BMC Medical Genetics.
[3] Fikret Erdogan,et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. , 2007, Human molecular genetics.
[4] G. Raymond,et al. Distal Xq28 microdeletions: Clarification of the spectrum of contiguous gene deletions involving ABCD1, BCAP31, and SLC6A8 with a new case and review of the literature , 2014, American journal of medical genetics. Part A.
[5] M C O'Donovan,et al. Copy number variation in schizophrenia in Sweden , 2014, Molecular Psychiatry.
[6] Gary D. Bader,et al. GeneMANIA Prediction Server 2013 Update , 2013, Nucleic Acids Res..
[7] M. Gill,et al. Cosegregation of schizophrenia with Becker muscular dystrophy: susceptibility locus for schizophrenia at Xp21 or an effect of the dystrophin gene in the brain? , 1993, Journal of medical genetics.
[8] Joseph A. Gogos,et al. Strong association of de novo copy number mutations with sporadic schizophrenia , 2008, Nature Genetics.
[9] P. Visscher,et al. Rare chromosomal deletions and duplications increase risk of schizophrenia , 2008, Nature.
[10] G. Kirov,et al. Analysis of copy number variations at 15 schizophrenia-associated loci , 2014, The British journal of psychiatry : the journal of mental science.
[11] J. Sebat,et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia , 2011, Nature.
[12] Jessica R. Wolff,et al. Microduplications of 16p11.2 are Associated with Schizophrenia , 2009, Nature Genetics.
[13] C. Spencer,et al. Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.
[14] D. Cutler,et al. Microdeletions of 3q29 confer high risk for schizophrenia. , 2010, American journal of human genetics.
[15] P. Stankiewicz,et al. Int22h-1/int22h-2-mediated Xq28 rearrangements: intellectual disability associated with duplications and in utero male lethality with deletions , 2011, Journal of Medical Genetics.
[16] Mark J Daly,et al. Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia. , 2006, American journal of human genetics.
[17] S Purcell,et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia , 2011, Molecular Psychiatry.
[18] Andreas Buja,et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism , 2011, Proceedings of the National Academy of Sciences.
[19] R. Shprintzen,et al. Late-onset psychosis in the velo-cardio-facial syndrome. , 1992, American journal of medical genetics.
[20] J. Sebat,et al. Implication of a rare deletion at distal 16p11.2 in schizophrenia. , 2013, JAMA psychiatry.
[21] Urvashi Surti,et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. , 2010, American journal of human genetics.
[22] Thomas W. Mühleisen,et al. Large recurrent microdeletions associated with schizophrenia , 2008, Nature.
[23] Jianxin Shi,et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. , 2011, The American journal of psychiatry.
[24] Randy L. Buckner,et al. Individual Differences in Amygdala-Medial Prefrontal Anatomy Link Negative Affect, Impaired Social Functioning, and Polygenic Depression Risk , 2012, The Journal of Neuroscience.
[25] M. Schwartz,et al. Large genomic rearrangements in MECP2 , 2005, Human mutation.
[26] Gary D Bader,et al. Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.
[27] Cathleen K. Yoshida,et al. Increased female autosomal burden of rare copy number variants in human populations and in autism families , 2015, Molecular Psychiatry.
[28] D. Reich,et al. Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.
[29] Willy C. Shih,et al. Danish National Advanced Technology Foundation , 2012 .
[30] J. Sebat,et al. CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics , 2012, Cell.
[31] J. Witte,et al. The contribution of genetic variants to disease depends on the ruler , 2014, Nature Reviews Genetics.
[32] D. Conrad,et al. Reciprocal Duplication of the Williams-Beuren Syndrome Deletion on Chromosome 7q11.23 Is Associated with Schizophrenia , 2014, Biological Psychiatry.
[33] Joseph T. Glessner,et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. , 2007, Genome research.
[34] G. Kirov,et al. Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia , 2015, Neuron.
[35] H. Peeters,et al. Microduplication 22q11.2: a description of the clinical, developmental and behavioral characteristics during childhood. , 2012, Genetic counseling.
[36] R. Straub,et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. , 2002, American journal of human genetics.
[37] Joshua M. Korn,et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs , 2008, Nature Genetics.
[38] Elvira Bramon,et al. Disruption of the neurexin 1 gene is associated with schizophrenia. , 2009, Human molecular genetics.
[39] G. Kirov,et al. Evidence that duplications of 22q11.2 protect against schizophrenia , 2013, Molecular Psychiatry.
[40] E. Banks,et al. De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.
[41] R. Handsaker,et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder , 2012, Molecular Psychiatry.
[42] J. Sebat,et al. High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia , 2011, Neuron.
[43] J. Lupski. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. , 1998, Trends in genetics : TIG.
[44] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[45] A. Reymond,et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant , 2012, Nature.
[46] Joshua M. Korn,et al. Accurately Assessing the Risk of Schizophrenia Conferred by Rare Copy-Number Variation Affecting Genes with Brain Function , 2010, PLoS genetics.
[47] D. Rujescu,et al. Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets , 2013, Translational Psychiatry.
[48] A. Singleton,et al. Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia , 2008, Science.
[49] H. Stefánsson,et al. Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness. , 2011, The American journal of psychiatry.