Exact L2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems

Abstract.We find the exact small deviation asymptotics for the L2-norm of various m-times integrated Gaussian processes closely connected with the Wiener process and the Ornstein – Uhlenbeck process. Using a general approach from the spectral theory of linear differential operators we obtain the two-term spectral asymptotics of eigenvalues in corresponding boundary value problems. This enables us to improve the recent results from [15] on the small ball asymptotics for a class of m-times integrated Wiener processes. Moreover, the exact small ball asymptotics for the m-times integrated Brownian bridge, the m-times integrated Ornstein – Uhlenbeck process and similar processes appear as relatively simple examples illustrating the developed general theory.

[1]  Fuchang Gao,et al.  Exact L2 Small Balls of Gaussian Processes , 2004 .

[2]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[3]  R. Dudley,et al.  On the Lower Tail of Gaussian Seminorms , 1979 .

[4]  D. Khoshnevisan,et al.  Chung's law for integrated brownian motion , 1998 .

[5]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[6]  Wenbo V. Li Comparison results for the lower tail of Gaussian seminorms , 1992 .

[7]  P. Goldbart,et al.  Linear differential operators , 1967 .

[8]  H. R. Dowson,et al.  LINEAR OPERATORS PART III: SPECTRAL OPERATORS , 1974 .

[9]  Fuchang Gao,et al.  Laplace Transforms via Hadamard Factorization , 2003 .

[10]  V. M. Zolotarev,et al.  Asymptotic behavior of the Gaussian measure inZ2 , 1986 .

[11]  M. Reed,et al.  Fourier Analysis, Self-Adjointness , 1975 .

[12]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[13]  Ildar Ibragimov On Estimation of the Spectral Function of a Stationary Gaussian Process , 1963 .

[14]  I. A. Ibragimov,et al.  Hitting probability of a Gaussian vector with values in a Hilbert space in a sphere of small radius , 1982 .

[15]  Xia Chen,et al.  Quadratic functionals and small ball probabilities for the $m$-fold integrated Brownian motion , 2003 .

[16]  W. Linde Comparison Results for the Small Ball Behavior of Gaussian Random Variables , 1994 .

[17]  Yu Safarov,et al.  The Asymptotic Distribution of Eigenvalues of Partial Differential Operators , 1996 .

[18]  M. Yor,et al.  Fubini's theorem for double Wiener integrals and the variance of the brownian path , 1991 .

[19]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[20]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[21]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[22]  Ching-Hua Chang,et al.  The Green functions of some boundary value problems via the Bernoulli and Euler polynomials , 2001 .

[23]  Jan Hannig,et al.  Integrated Brownian motions and exact L2-small balls , 2003 .

[24]  V. Smirnov,et al.  A course of higher mathematics , 1964 .

[25]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[26]  L. Beghin,et al.  Exact Small Ball Constants for Some Gaussian Processes under the L2-Norm , 2005 .