Population Diversity Analysis for the Chaotic Based Selection of Individuals in Differential Evolution

This research deals with the modern and popular hybridization of chaotic dynamics and evolutionary computation. It is aimed at the influence of chaotic sequences on the population diversity as well as the algorithm performance of the simple parameter adaptive Differential Evolution (DE) strategy: jDE. Experiments are focused on the extensive investigation of the different randomization schemes for the selection of individuals in DE algorithm driven by the nine different two-dimensional discrete chaotic systems, as the chaotic pseudo-random number generators. The population diversity and jDE convergence are recorded on the 15 test functions from the CEC 2015 benchmark.

[1]  Michal Pluhacek,et al.  Preliminary Study on the Randomization and Sequencing for the Chaos Embedded Heuristic , 2015, AECIA.

[2]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[3]  Janez Brest,et al.  Differential evolution and differential ant-stigmergy on dynamic optimisation problems , 2013, Int. J. Syst. Sci..

[4]  Alex S. Fukunaga,et al.  Improving the search performance of SHADE using linear population size reduction , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[5]  Michal Pluhacek,et al.  Hybridization of Multi-chaotic Dynamics and Adaptive Control Parameter Adjusting jDE Strategy , 2016 .

[6]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[7]  Michal Pluhacek,et al.  On the behavior and performance of chaos driven PSO algorithm with inertia weight , 2013, Comput. Math. Appl..

[8]  Giovanni Iacca,et al.  Compact Differential Evolution Light: High Performance Despite Limited Memory Requirement and Modest Computational Overhead , 2012, Journal of Computer Science and Technology.

[9]  Magdalena Metlicka,et al.  Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems , 2015, Swarm Evol. Comput..

[10]  Amir Hossein Gandomi,et al.  Chaotic Krill Herd algorithm , 2014, Inf. Sci..

[11]  Ville Tirronen,et al.  A study on scale factor in distributed differential evolution , 2011, Inf. Sci..

[12]  Giovanni Iacca,et al.  Disturbed Exploitation compact Differential Evolution for limited memory optimization problems , 2011, Inf. Sci..

[13]  L. Coelho,et al.  A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch , 2009 .

[14]  Michal Pluhacek,et al.  Chaos particle swarm optimization with Eensemble of chaotic systems , 2015, Swarm Evol. Comput..

[15]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[16]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[17]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[18]  A. Rezaee Jordehi,et al.  Chaotic bat swarm optimisation (CBSO) , 2015, Appl. Soft Comput..

[19]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[20]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[21]  Chunwei Zhang,et al.  A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis , 2016 .

[22]  Leandro dos Santos Coelho,et al.  A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization , 2014, Appl. Math. Comput..

[23]  Janez Brest,et al.  Self-adaptive control parameters' randomization frequency and propagations in differential evolution , 2015, Swarm Evol. Comput..

[24]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[25]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[26]  Roman Senkerik,et al.  Chaos driven evolutionary algorithms for the task of PID control , 2010, Comput. Math. Appl..

[27]  Michal Pluhacek,et al.  Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[28]  Amir Hossein Gandomi,et al.  Chaotic cuckoo search , 2015, Soft Computing.