Ex vitro hairy root induction in detached peanut leaves for plant–nematode interaction studies

[1]  E. Danchin,et al.  Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene , 2017, Plant Molecular Biology.

[2]  Jianfeng Liu,et al.  Molecular characters and different expression of WRKY1 gene from Gossypium barbadense L. and Gossypium hirsutum L. , 2016 .

[3]  Shuai Liu,et al.  Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes , 2016 .

[4]  A. Paterson,et al.  Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens , 2016, Proceedings of the National Academy of Sciences.

[5]  R. Varshney,et al.  Genomic Tools in Groundnut Breeding Program: Status and Perspectives , 2016, Front. Plant Sci..

[6]  Wei Huang,et al.  The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut , 2016, Nature Genetics.

[7]  Hai Huang,et al.  Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis1 , 2016, Plant Physiology.

[8]  R. Togawa,et al.  Root Transcriptome Analysis of Wild Peanut Reveals Candidate Genes for Nematode Resistance , 2015, PloS one.

[9]  M. Johnson,et al.  Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study , 2015, PloS one.

[10]  D. Cosgrove Plant expansins: diversity and interactions with plant cell walls. , 2015, Current opinion in plant biology.

[11]  R. Togawa,et al.  Transcriptome Profiling of Wild Arachis from Water-Limited Environments Uncovers Drought Tolerance Candidate Genes , 2015, Plant Molecular Biology Reporter.

[12]  P. Kirti,et al.  Transcriptomic and Proteomic Analyses of Resistant Host Responses in Arachis diogoi Challenged with Late Leaf Spot Pathogen, Phaeoisariopsis personata , 2015, PloS one.

[13]  P. Ramteke,et al.  Progress in genetic engineering of peanut (Arachis hypogaea L.)--a review. , 2015, Plant biotechnology journal.

[14]  A. K. Kukreja,et al.  Hairy root biotechnology—indicative timeline to understand missing links and future outlook , 2015, Protoplasma.

[15]  E. Nester Agrobacterium: nature’s genetic engineer , 2015, Front. Plant Sci..

[16]  S. Kay,et al.  Tissue-specific clocks in Arabidopsis show asymmetric coupling , 2014, Nature.

[17]  Y. Chu,et al.  A Technique to Study Meloidogyne arenaria Resistance in Agrobacterium rhizogenes-Transformed Peanut. , 2014, Plant disease.

[18]  Mahima Bansal,et al.  Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’ production from Bacopa monnieri (L.) Wettst. , 2014, Acta Physiologiae Plantarum.

[19]  S. Chao,et al.  High-density mapping of a resistance gene to Ug99 from the Iranian landrace PI 626573 , 2014, Molecular Breeding.

[20]  A. Paterson,et al.  Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.) , 2014, Molecular Breeding.

[21]  C. Morgante,et al.  A survey of genes involved in Arachis stenosperma resistance to Meloidogyne arenaria race 1. , 2013, Functional plant biology : FPB.

[22]  B. Matthews,et al.  Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode , 2013, Planta.

[23]  R. Togawa,et al.  Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection , 2012, BMC Genomics.

[24]  Emmanuel Monyo,et al.  Advances in Arachis genomics for peanut improvement. , 2012, Biotechnology advances.

[25]  Sheela Chandra Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism , 2012, Biotechnology Letters.

[26]  P. Gresshoff,et al.  Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.) , 2012, Plant Cell, Tissue and Organ Culture (PCTOC).

[27]  Y. Chu,et al.  Impact of Molecular Genetic Research on Peanut Cultivar Development , 2011 .

[28]  R. Pierik,et al.  Cell Wall Modifying Proteins Mediate Plant Acclimatization to Biotic and Abiotic Stresses , 2011 .

[29]  C. Morgante,et al.  Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut , 2011, BMC Research Notes.

[30]  D. Bertioli,et al.  An overview of peanut and its wild relatives , 2011, Plant Genetic Resources.

[31]  R. Varshney,et al.  Identification of candidate genome regions controlling disease resistance in Arachis , 2009, BMC Plant Biology.

[32]  M. DasGupta,et al.  Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe. , 2009, Molecular plant-microbe interactions : MPMI.

[33]  T. Sanders,et al.  Phenolic Profiles and Antioxidant Activity of Extracts from Peanut Plant Parts , 2008 .

[34]  V. Veena,et al.  Agrobacterium rhizogenes: recent developments and promising applications , 2007, In Vitro Cellular & Developmental Biology - Plant.

[35]  S. O'keefe,et al.  Production and secretion of resveratrol in hairy root cultures of peanut. , 2007, Phytochemistry.

[36]  P. Gresshoff,et al.  Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes , 2007, Nature Protocols.

[37]  K. Matand,et al.  Evaluation of peanut genotypes for in vitro plant regeneration using thidiazuron. , 2007, Journal of biotechnology.

[38]  Dongxue Li,et al.  Agrobacterium rhizogenes-mediated transformation of soybean to study root biology , 2007, Nature Protocols.

[39]  P. K. Jaiwal,et al.  Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker , 2007, Plant Cell Reports.

[40]  Sheng Zhao,et al.  Comprehensive Algorithm for Quantitative Real-Time Polymerase Chain Reaction , 2005, J. Comput. Biol..

[41]  B. Fuchs,et al.  Ex vitro composite plants: an inexpensive, rapid method for root biology. , 2005, The Plant journal : for cell and molecular biology.

[42]  H. Sharma,et al.  Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. , 2005, Journal of economic entomology.

[43]  J. Valls,et al.  Rooting in Leaf Petioles of Arachis for Cytological Analysis , 2004 .

[44]  Perikles Simon,et al.  Q-Gene: Processing Quantitative Real-time RT-PCR Data , 2003, Bioinform..

[45]  J. Shanks,et al.  Plant 'hairy root' culture. , 1999, Current opinion in biotechnology.

[46]  H. Daimon,et al.  Morphological Alterations and Root Nodule Formation inAgrobacterium rhizogenes-mediated Transgenic Hairy Roots of Peanut (Arachis hypogaeaL.) , 1998 .

[47]  S. Mihaljević,et al.  Increase of root induction in Pinus nigra explants using agrobacteria , 1996, Plant Cell Reports.

[48]  R. Gaugler,et al.  Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence , 1991 .

[49]  D. Tepfer,et al.  Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges , 1989, Plant Molecular Biology.

[50]  K. Barker,et al.  An improved technique for clearing and staining plant tissues for detection of nematodes. , 1983, Journal of nematology.

[51]  H. Melouk,et al.  A Method of Screening Peanut Genotypes for Resistance To Cercospora Leafspot1 , 1978 .

[52]  R. Varshney Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. , 2016, Plant science : an international journal of experimental plant biology.

[53]  S. Leal-Bertioli,et al.  Genomics and Genetic Transformation in Arachis , 2014 .

[54]  Y. Kapulnik,et al.  Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). , 2010, Molecular plant pathology.

[55]  S. Park,et al.  Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains , 2008 .

[56]  G. Gheysen,et al.  Hairy roots to test for transgenic nematode resistance: think twice , 2003 .

[57]  J. R. Porter Host range and implications of plant infection by Agrobacterium rhizogenes , 1991 .

[58]  C. Campbell,et al.  Components of Resistance in Peanut to Cercospora arachidicola , 1985 .

[59]  J. P. Moss,et al.  Resistance to peanut rust in wild Arachis species. , 1983 .