Effect of reaction media on hydrogenolysis of polyethylene plastic waste: Polymer-surface interactions in small alkane/polymer blends

[1]  D. Vlachos,et al.  Conformations of polyolefins on platinum catalysts control product distribution in plastics recycling , 2023, Chemical science.

[2]  D. Vlachos,et al.  Ni/SiO2 Catalysts for Polyolefin Deconstruction via the Divergent Hydrogenolysis Mechanism , 2022, Applied Catalysis B: Environmental.

[3]  D. Vlachos,et al.  Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts , 2022, Nature Communications.

[4]  D. Vlachos,et al.  A General Strategy and a Consolidated Mechanism for Low-methane Hydrogenolysis of Polyethylene over Ruthenium , 2022, Applied Catalysis B: Environmental.

[5]  Yuriy Román‐Leshkov,et al.  The Critical Role of Process Analysis in Chemical Recycling and Upcycling of Waste Plastics. , 2022, Annual review of chemical and biomolecular engineering.

[6]  Steven J. Plimpton,et al.  LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales , 2021, Computer Physics Communications.

[7]  D. Vlachos,et al.  Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on Tungstated Zirconia , 2021, JACS Au.

[8]  D. Vlachos,et al.  Polypropylene Plastic Waste Conversion to Lubricants over Ru/TiO2 Catalysts , 2021, ACS Catalysis.

[9]  Erik G. Brandt,et al.  First principles characterisation of bio-nano interface. , 2021, Physical chemistry chemical physics : PCCP.

[10]  Shyam M. Saladi,et al.  Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. , 2021, Journal of molecular biology.

[11]  Ryan A. Hackler,et al.  Catalytic upcycling of high-density polyethylene via a processive mechanism , 2020, Nature Catalysis.

[12]  F. Bates,et al.  Hydrogenolysis of Linear Low-Density Polyethylene during Heterogeneous Catalytic Hydrogen–Deuterium Exchange , 2020 .

[13]  Marie L. Laury,et al.  Tinker 8: Software Tools for Molecular Design. , 2018, Journal of chemical theory and computation.

[14]  T. Manz,et al.  Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more , 2018, RSC advances.

[15]  Thomas A. Manz,et al.  Introducing DDEC6 atomic population analysis: part 3. Comprehensive method to compute bond orders , 2017 .

[16]  T. Gould How polarizabilities and C6 coefficients actually vary with atomic volume. , 2016, The Journal of chemical physics.

[17]  Thomas A. Manz,et al.  Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology , 2016 .

[18]  T. Manz,et al.  Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials , 2016 .

[19]  T. Bučko,et al.  C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table. , 2016, Journal of chemical theory and computation.

[20]  T. Huynh,et al.  Simplified TiO2 force fields for studies of its interaction with biomolecules. , 2015, The Journal of chemical physics.

[21]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[22]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[23]  Michael R. Shirts,et al.  Statistically optimal analysis of samples from multiple equilibrium states. , 2008, The Journal of chemical physics.

[24]  Julian Tirado-Rives,et al.  Molecular modeling of organic and biomolecular systems using BOSS and MCPRO , 2005, J. Comput. Chem..

[25]  David J. Earl,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[26]  Vlasis G. Mavrantzas,et al.  Detailed Atomistic Simulation of a Polymer Melt/Solid Interface:  Structure, Density, and Conformation of a Thin Film of Polyethylene Melt Adsorbed on Graphite , 2005 .

[27]  D. Kofke,et al.  Selection of temperature intervals for parallel-tempering simulations. , 2005, The Journal of chemical physics.

[28]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[29]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[30]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[31]  Rahmi Ozisik,et al.  Diffusion in binary liquid n-alkane and alkane-polyethylene blends , 1998 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[35]  J. Joanny,et al.  Adsorption of Polymer Solutions onto a Flat Surface , 1996 .

[36]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[37]  Yethiraj Entropic and enthalpic surface segregation from blends of branched and linear polymers. , 1995, Physical review letters.

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  K. Schweizer,et al.  Surface segregation in polymer blends due to stiffness disparity , 1994 .

[40]  Bates,et al.  Entropy-driven surface segregation in block copolymer melts. , 1993, Physical review letters.

[41]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[42]  U. Steiner,et al.  Complete Wetting from Polymer Mixtures , 1992, Science.

[43]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[44]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[45]  B. Crist,et al.  Hydrogen−deuterium exchange for labelling polyethylene , 1989 .

[46]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[47]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[48]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[49]  E. DiMarzio,et al.  Adsorption of Polymer Molecules at Low Surface Coverage , 1965 .

[50]  C. Liang,et al.  Infrared spectra of crystalline and stereoregular polymers. II. Carbon—hydrogen and carbon—deuterium stretching frequencies of polypropylene and deuterated polypropylenes , 1960 .

[51]  D. Vlachos,et al.  Antioxidant-Induced Transformations of a Metal-Acid Hydrocracking Catalyst in the Deconstruction of Polyethylene Waste , 2022, Green Chemistry.

[52]  D. Vlachos,et al.  Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: a comparative study , 2022, Reaction Chemistry & Engineering.

[53]  Ryan A. Hackler,et al.  Conversion of plastic waste into high-value lubricants: techno-economic analysis and life cycle assessment , 2022, Green Chemistry.

[54]  Erik Andreassen,et al.  Infrared and Raman spectroscopy of polypropylene , 1999 .

[55]  D. J. Walsh,et al.  The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight , 1992 .