Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties

[1]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[2]  Jean-Frédéric Gerbeau,et al.  Parameter identification for a one-dimensional blood flow model , 2005 .

[3]  T J Pedley,et al.  Blood pressure and flow rate in the giraffe jugular vein. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[5]  J K Raines,et al.  A computer simulation of arterial dynamics in the human leg. , 1974, Journal of biomechanics.

[6]  S. Sherwin,et al.  Lumped parameter outflow models for 1-D blood flow simulations: Effect on pulse waves and parameter estimation , 2008 .

[7]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[8]  Pierre-Yves Lagrée,et al.  Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model , 2013, Computer methods in biomechanics and biomedical engineering.

[9]  Jean-Frédéric Gerbeau,et al.  Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling. , 2017 .

[10]  W. P. Timlake,et al.  A theory of fluid flow in compliant tubes. , 1966, Biophysical journal.

[11]  E. Isaacson,et al.  Nonlinear resonance in systems of conservation laws , 1992 .

[12]  G. Warnecke,et al.  EXACT RIEMANN SOLUTIONS TO COMPRESSIBLE EULER EQUATIONS IN DUCTS WITH DISCONTINUOUS CROSS-SECTION , 2012 .

[13]  Tomás Morales de Luna,et al.  A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows , 2010, SIAM J. Numer. Anal..

[14]  Lucas O Müller,et al.  A global multiscale mathematical model for the human circulation with emphasis on the venous system , 2014, International journal for numerical methods in biomedical engineering.

[15]  Emmanuel Audusse,et al.  A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes , 2005 .

[16]  Laurent Gosse,et al.  Computing Qualitatively Correct Approximations of Balance Laws , 2013 .

[17]  Laurent Gosse,et al.  Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes , 1996 .

[18]  Nikolai Andrianov,et al.  Performance of numerical methods on the non‐unique solution to the Riemann problem for the shallow water equations , 2005 .

[19]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[20]  Lucas O. Müller,et al.  A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow , 2015, J. Comput. Phys..

[21]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[22]  D. Korteweg Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rhren , 1878 .

[23]  Nicola Cavallini,et al.  One-dimensional Modelling of Venous Pathologies: Finite Volume and WENO Schemes , 2010 .

[24]  Pierre-Yves Lagrée,et al.  An inverse technique to deduce the elasticity of a large artery , 2000 .

[25]  B. Perthame,et al.  A kinetic scheme for the Saint-Venant system¶with a source term , 2001 .

[26]  F. Bouchut Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws , 1999 .

[27]  Philip L. Roe,et al.  Upwind differencing schemes for hyperbolic conservation laws with source terms , 1987 .

[28]  S. Sherwin,et al.  Analysing the pattern of pulse waves in arterial networks: a time-domain study , 2009 .

[29]  Javier Murillo,et al.  A Roe type energy balanced solver for 1D arterial blood flow and transport , 2015 .

[30]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[31]  S. Sherwin,et al.  One-dimensional modelling of a vascular network in space-time variables , 2003 .

[32]  Olivier Delestre,et al.  SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies , 2011, 1110.0288.

[33]  J. Lambert,et al.  On the nonlinearities of fluid flow in nonrigid tubes , 1958 .

[34]  Eleuterio F. Toro,et al.  Flow in Collapsible Tubes with Discontinuous Mechanical Properties: Mathematical Model and Exact Solutions , 2013 .

[35]  Timothy J. Pedley,et al.  The fluid mechanics of large blood vessels , 1980 .

[36]  A. Shapiro Steady Flow in Collapsible Tubes , 1977 .

[37]  Spencer J. Sherwin,et al.  Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system , 2003 .

[38]  J. Fullana,et al.  Numerical simulations of a bypass repair of an iliac artery obliteration , 2015, Computer methods in biomechanics and biomedical engineering.

[39]  Thomas J. R. Hughes,et al.  On the one-dimensional theory of blood flow in the larger vessels , 1973 .

[40]  Manuel J. Castro,et al.  WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE , 2007 .

[41]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[42]  S. Sherwin,et al.  Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements , 2011, Journal of biomechanics.

[43]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[44]  Tai-Ping Liu Nonlinear resonance for quasilinear hyperbolic equation , 1987 .

[45]  Laurent Dumas,et al.  An optimal reconstruction of the human arterial tree from doppler echotracking measurements , 2012, GECCO '12.

[46]  Olivier Delestre,et al.  A ‘well‐balanced’ finite volume scheme for blood flow simulation , 2012, ArXiv.

[47]  Lucas O. Müller,et al.  Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties , 2013, J. Comput. Phys..

[48]  A Noordergraaf,et al.  Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. , 1970, Journal of biomechanics.

[49]  Pierre-Yves Lagrée,et al.  The dicrotic notch analyzed by a numerical model , 2016, Comput. Biol. Medicine.

[50]  A. Quarteroni,et al.  One-dimensional models for blood flow in arteries , 2003 .

[51]  Jordi Alastruey,et al.  A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling , 2015, International journal for numerical methods in biomedical engineering.

[52]  Marie-Odile Bristeau,et al.  Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes , 2001 .

[53]  Manuel Jesús Castro Díaz,et al.  High order exactly well-balanced numerical methods for shallow water systems , 2013, J. Comput. Phys..

[54]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[55]  Sunčica Čanić,et al.  Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties , 2002 .

[56]  Gang Li,et al.  Well‐balanced finite difference weighted essentially non‐oscillatory schemes for the blood flow model , 2016 .

[57]  Olivier Delestre,et al.  A shallow water with variable pressure model for blood flow simulation , 2015, Networks Heterog. Media.