Quantifying future climate change

This Perspective describes techniques for quantifying uncertainties in climate projections in terms of a common framework, whereby models are used to explore relationships between past climate and climate change and future projections.

[1]  Seiji Yukimoto,et al.  Climate Change Projections , 1998 .

[2]  Peter M. Cox,et al.  An analogue model to derive additional climate change scenarios from existing GCM simulations , 2000 .

[3]  S. Raper,et al.  An Observationally Based Estimate of the Climate Sensitivity , 2002 .

[4]  Christophe Soligo,et al.  Origins and estimates of uncertainty in predictions of twenty-first century temperature rise , 2002 .

[5]  M. Webb,et al.  Quantification of modelling uncertainties in a large ensemble of climate change simulations , 2004, Nature.

[6]  Myles R. Allen,et al.  Constraining climate forecasts: The role of prior assumptions , 2005 .

[7]  Leonard A. Smith,et al.  Uncertainty in predictions of the climate response to rising levels of greenhouse gases , 2005, Nature.

[8]  P. Stott,et al.  Uncertainty in continental‐scale temperature predictions , 2006 .

[9]  Hermann Held,et al.  Climate sensitivity estimated from ensemble simulations of glacial climate , 2006 .

[10]  Myles R. Allen,et al.  Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming , 2006 .

[11]  A. Hall,et al.  Using the current seasonal cycle to constrain snow albedo feedback in future climate change , 2006 .

[12]  Matthew D. Collins,et al.  Towards quantifying uncertainty in transient climate change , 2006 .

[13]  G. Hegerl,et al.  Climate sensitivity constrained by temperature reconstructions over the past seven centuries , 2006, Nature.

[14]  Matthew D. Collins,et al.  Frequency distributions of transient regional climate change from perturbed physics ensembles of general circulation model simulations , 2006 .

[15]  J. Murphy,et al.  A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Jonathan Rougier,et al.  Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations , 2007 .

[17]  John F. B. Mitchell,et al.  THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research , 2007 .

[18]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[19]  M. Crucifix,et al.  Using the past to constrain the future: how the palaeorecord can improve estimates of global warming , 2007, 1204.4807.

[20]  Reto Knutti,et al.  The use of the multi-model ensemble in probabilistic climate projections , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Jonathan M. Gregory,et al.  Transient climate response estimated from radiative forcing and observed temperature change , 2008 .

[22]  E. Hawkins,et al.  The Potential to Narrow Uncertainty in Regional Climate Predictions , 2009 .

[23]  Jonathan Rougier,et al.  Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments , 2009 .

[24]  A. Hall,et al.  September sea-ice cover in the Arctic Ocean projected to vanish by 2100 , 2009 .

[25]  J. Dufresne,et al.  Why climate sensitivity may not be so unpredictable , 2009 .

[26]  J. Murphy,et al.  Natural Hazards and Earth System Sciences Probabilistic projections for 21 st century European climate , 2010 .

[27]  M. Collins,et al.  The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model , 2010 .

[28]  Andrew J. Challinor,et al.  Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China , 2010 .

[29]  M. Tignor,et al.  IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections , 2010 .

[30]  M. Ghil,et al.  Another look at climate sensitivity , 2010, 1003.0253.

[31]  B. Hurk,et al.  The role of atmosphere and ocean physical processes in ENSO in a perturbed physics coupled climate model , 2010 .

[32]  J. Annan,et al.  Reliability of the CMIP3 ensemble , 2010 .

[33]  G. V. Oldenborgh,et al.  Atmospheric properties of ENSO: models versus observations , 2010 .

[34]  Matthew D. Collins,et al.  Probabilistic projections for 21st century European climate , 2010 .

[35]  Reto Knutti,et al.  Challenges in Combining Projections from Multiple Climate Models , 2010 .

[36]  M. Webb,et al.  Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles , 2011 .

[37]  M. Webb,et al.  Multivariate probabilistic projections using imperfect climate models part I: outline of methodology , 2012, Climate Dynamics.

[38]  James D. Annan,et al.  Reliability of multi-model and structurally different single-model ensembles , 2010, Climate Dynamics.

[39]  P. Stott,et al.  Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000 , 2011, Nature.

[40]  G. Roe,et al.  How sensitive is climate sensitivity? , 2011 .

[41]  E. Hawkins,et al.  The potential to narrow uncertainty in projections of regional precipitation change , 2011 .

[42]  Cecilia M. Bitz,et al.  The reversibility of sea ice loss in a state‐of‐the‐art climate model , 2011 .

[43]  G. Roe,et al.  Climate commitment in an uncertain world , 2011 .

[44]  J. Annan,et al.  On the generation and interpretation of probabilistic estimates of climate sensitivity , 2011 .

[45]  Richard E Chandler,et al.  Exploiting strength, discounting weakness: combining information from multiple climate simulators , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .