Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches.

[1]  Stefan Wager,et al.  Estimation and Inference of Heterogeneous Treatment Effects using Random Forests , 2015, Journal of the American Statistical Association.

[2]  C. Brokamp aiRpollution: initial release , 2016 .

[3]  Roger Bivand,et al.  Bindings for the Geospatial Data Abstraction Library , 2015 .

[4]  Colin W. Rundel,et al.  Interface to Geometry Engine - Open Source (GEOS) , 2015 .

[5]  E. Pebesma,et al.  Classes and Methods for Spatial Data , 2015 .

[6]  A. Peters,et al.  Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts. , 2015, Environment international.

[7]  F. Underwood,et al.  Development of land-use regression models for metals associated with airborne particulate matter in a North American city , 2015 .

[8]  A. Peters,et al.  Natural-Cause Mortality and Long-Term Exposure to Particle Components: An Analysis of 19 European Cohorts within the Multi-Center ESCAPE Project , 2015, Environmental health perspectives.

[9]  Jon Atli Benediktsson,et al.  Multiple Classifier Systems , 2015, Lecture Notes in Computer Science.

[10]  Bert Brunekreef,et al.  Elemental Composition of Particulate Matter and the Association with Lung Function , 2014, Epidemiology.

[11]  Trevor J. Hastie,et al.  Confidence intervals for random forests: the jackknife and the infinitesimal jackknife , 2013, J. Mach. Learn. Res..

[12]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[13]  Zev Ross,et al.  Application of the deletion/substitution/addition algorithm to selecting land use regression models for interpolating air pollution measurements in California , 2013 .

[14]  Bert Brunekreef,et al.  Development of land use regression models for particle composition in twenty study areas in Europe. , 2013, Environmental science & technology.

[15]  Bert Brunekreef,et al.  Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project. , 2012, Environmental science & technology.

[16]  Marita Voogt,et al.  Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area. , 2010 .

[17]  Alexander Kolovos,et al.  Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data. , 2010, Environmental science & technology.

[18]  Antonella Zanobetti,et al.  Fine particulate air pollution and its components in association with cause-specific emergency admissions , 2009, Environmental health : a global access science source.

[19]  Dan L. Crouse,et al.  A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada , 2009 .

[20]  M. Jerrett,et al.  A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures. , 2009, The Science of the total environment.

[21]  Toshihide Tsuda,et al.  Application of land use regression to regulatory air quality data in Japan. , 2009, The Science of the total environment.

[22]  Douglas W Dockery,et al.  Health effects of particulate air pollution. , 2009, Annals of epidemiology.

[23]  R. Kloner,et al.  Air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. , 2008, Journal of the American College of Cardiology.

[24]  B. Brunekreef,et al.  Estimation of outdoor NO(x), NO(2), and BTEX exposure in a cohort of pregnant women using land use regression modeling. , 2008, Environmental science & technology.

[25]  Scott L. Zeger,et al.  Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies , 2007, Environmental health perspectives.

[26]  Michael Brauer,et al.  Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. , 2007, Environmental science & technology.

[27]  N Künzli,et al.  A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. , 2007, Journal of environmental monitoring : JEM.

[28]  M. Jerrett,et al.  Modeling the Intraurban Variability of Ambient Traffic Pollution in Toronto, Canada , 2007, Journal of toxicology and environmental health. Part A.

[29]  G. Lemasters,et al.  A Review of Land-use Regression Models for Characterizing Intraurban Air Pollution Exposure , 2007, Inhalation toxicology.

[30]  D. Bernstein,et al.  A Comparison of Proximity and Land Use Regression Traffic Exposure Models and Wheezing in Infants , 2006, Environmental health perspectives.

[31]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[32]  D. Bernstein,et al.  High prevalence of aeroallergen sensitization among infants of atopic parents. , 2006, The Journal of pediatrics.

[33]  Zev Ross,et al.  Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses , 2006, Journal of Exposure Science and Environmental Epidemiology.

[34]  S. Hu,et al.  UNMIX modeling of ambient PM(2.5) near an interstate highway in Cincinnati, OH, USA. , 2006, Atmospheric environment.

[35]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[36]  D. Bernstein,et al.  Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. , 2005, The Journal of allergy and clinical immunology.

[37]  David Briggs,et al.  The Role of Gis: Coping With Space (And Time) in Air Pollution Exposure Assessment , 2005, Journal of toxicology and environmental health. Part A.

[38]  Ana Osorio,et al.  A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[39]  Kjell Johnson,et al.  Evaluating Methods for Classifying Expression Data , 2004, Journal of biopharmaceutical statistics.

[40]  Holger Schwender,et al.  A pilot study on the application of statistical classification procedures to molecular epidemiological data. , 2004, Toxicology letters.

[41]  G. Izmirlian,et al.  Application of the Random Forest Classification Algorithm to a SELDI‐TOF Proteomics Study in the Setting of a Cancer Prevention Trial , 2004, Annals of the New York Academy of Sciences.

[42]  David Ward,et al.  Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data , 2003, Bioinform..

[43]  D. Stone,et al.  Prediction of clinical drug efficacy by classification of drug-induced genomic expression profiles in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[44]  R. Henry Multivariate receptor modeling by N-dimensional edge detection , 2003 .

[45]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[46]  Roberto Zavala,et al.  Multiple classifier systems in Akatek (Mayan) , 2000 .

[47]  Simon Kingham,et al.  Mapping Urban Air Pollution Using GIS: A Regression-Based Approach , 1997, Int. J. Geogr. Inf. Sci..

[48]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .