The electronic structure and optical response of rutile, anatase and brookite TiO2

In this study, we present a combined density functional theory and many-body perturbation theory study on the electronic and optical properties of TiO(2) brookite as well as the tetragonal phases rutile and anatase. The electronic structure and linear optical response have been calculated from the Kohn-Sham band structure applying (semi)local as well as nonlocal screened hybrid exchange-correlation density functionals. Single-particle excitations are treated within the GW approximation for independent quasiparticles. For optical response calculations, two-particle excitations have been included by solving the Bethe-Salpeter equation for Coulomb correlated electron-hole pairs. On this methodological basis, gap data and optical spectra for the three major phases of TiO(2) are provided. The common characteristics of brookite with the rutile and anatase phases, which have been discussed more comprehensively in the literature, are highlighted. Furthermore, the comparison of the present calculations with measured optical response data of rutile indicate that discrepancies discussed in numerous earlier studies are due to the measurements rather than related to an insufficient theoretical description.

[1]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[2]  L. Österlund,et al.  Adsorption and Photoinduced Decomposition of Acetone and Acetic Acid on Anatase, Brookite, and Rutile TiO2 Nanoparticles , 2010 .

[3]  L. Gracia,et al.  Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. , 2006, The journal of physical chemistry. B.

[4]  Eric L. Shirley,et al.  Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation , 1998 .

[5]  R. Leonelli,et al.  Optical properties of rutile near its fundamental band gap. , 1995, Physical review. B, Condensed matter.

[6]  Á. Rubio,et al.  Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases , 2010, 1003.6010.

[7]  Lang Sun,et al.  High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance , 2009 .

[8]  C. Ambrosch-Draxl,et al.  Optical absorption spectra of semiconductors and insulators including electron-hole correlations: An ab initio study within the LAPW method , 2002 .

[9]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[10]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[11]  G. Oskam,et al.  Phase-pure TiO2 nanoparticles: anatase, brookite and rutile , 2008, Nanotechnology.

[12]  R. Haydock The recursive solution of the Schrödinger equation , 1980 .

[13]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[14]  Jean-François Guillemoles,et al.  Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method , 2002 .

[15]  M. Igarashi,et al.  Structure dependence of reflection spectra of TiO2 single crystals , 1998 .

[16]  R. Thorpe,et al.  Energy Level Alignment of a Zinc(II) Tetraphenylporphyrin Dye Adsorbed onto TiO2(110) and ZnO(112̅0) Surfaces , 2010 .

[17]  Mathias Schubert,et al.  Measurement of rutile TiO2 dielectric tensor from 0.148 to 33 μm using generalized ellipsometry , 2000, SPIE Optics + Photonics.

[18]  Lu J. Sham,et al.  Local-field and excitonic effects in the optical spectrum of a covalent crystal , 1975 .

[19]  M. Cardona,et al.  Optical Properties and Band Structure of Wurtzite-Type Crystals and Rutile , 1965 .

[20]  M. Mohammadizadeh,et al.  First-principles elastic and thermal properties of TiO2: a phonon approach , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[22]  Y. Tezuka,et al.  Photoemission and Bremsstrahlung Isochromat Spectroscopy Studies of TiO2 (Rutile) and SrTiO3 , 1994 .

[23]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[24]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[25]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[26]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[27]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[28]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[29]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[30]  Friedhelm Bechstedt,et al.  EfficientO(N2)method to solve the Bethe-Salpeter equation , 2003 .

[31]  K. Amine,et al.  Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties† , 2010 .

[32]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[33]  T. Frauenheim,et al.  Band Lineup and Charge Carrier Separation in Mixed Rutile-Anatase Systems , 2011 .

[34]  Nicholas M. Harrison,et al.  First-principles calculations of the phase stability of TiO2 , 2002 .

[35]  Xiang Wu,et al.  Structural stability of TiO2 at high pressure in density-functional theory based calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  F. Fuchs,et al.  Efficient O(N 2 ) approach to solve the Bethe-Salpeter equation for excitonic bound states , 2008, 0805.0659.

[37]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[38]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[39]  Michael Grätzel,et al.  Dye-Sensitized Solid-State Heterojunction Solar Cells , 2005 .

[40]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[41]  X. Gonze,et al.  First-principles study of titanium dioxide: Rutile and anatase , 2000 .

[42]  M. Horn,et al.  Refinement of the structure of anatase at several temperatures , 1972 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  B. M. Smirnov,et al.  Modeling of configurational transitions in atomic systems , 2013 .

[45]  G. Kresse,et al.  Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. , 2007, Physical review letters.

[46]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[47]  P. Couturier Japan , 1988, The Lancet.

[48]  P. Mori-Sánchez,et al.  Quantum-mechanical analysis of the equation of state of anatase TiO 2 , 2001 .

[49]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[50]  Optical properties of single-crystal anatase TiO2 , 1997 .

[51]  C. Hwang,et al.  Influence of exchange-correlation functionals on dielectric properties of rutile TiO2 , 2011 .

[52]  R. Zallen,et al.  The optical absorption edge of brookite TiO2 , 2006 .

[53]  M. Hybertsen,et al.  Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.

[54]  J. J. Rehr,et al.  Optical to UV spectra and birefringence of SiO2 and TiO2: First-principles calculations with excitonic effects , 2008, 0807.1920.

[55]  Werner Hanke,et al.  Many-particle effects in the optical spectrum of a semiconductor , 1980 .

[56]  J. Nowotny,et al.  Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material , 2008 .

[57]  T. Frauenheim,et al.  Polaronic effects in TiO 2 calculated by the HSE06 hybrid functional: Dopant passivation by carrier self-trapping , 2011 .

[58]  Georg Kresse,et al.  Hybrid functional studies of the oxygen vacancy in TiO 2 , 2010 .

[59]  Xudong Sun,et al.  ANATASE, BROOKITE, AND RUTILE NANOCRYSTALS VIA REDOX REACTIONS UNDER MILD HYDROTHERMAL CONDITIONS: PHASE SELECTIVE SYNTHESIS AND PHYSICOCHEMICAL PROPERTIES , 2007 .

[60]  L. J. Sham,et al.  Many-Particle Derivation of the Effective-Mass Equation for the Wannier Exciton , 1966 .

[61]  Yi Li,et al.  A theoretical study on the electronic structures of TiO2: Effect of Hartree-Fock exchange. , 2005, The journal of physical chemistry. B.

[62]  Hardman,et al.  Valence-band structure of TiO2 along the Gamma - Delta -X and Gamma - Sigma -M directions. , 1994, Physical review. B, Condensed matter.

[63]  J. Pascual,et al.  Resolved Quadrupolar Transition in TiO 2 , 1977 .

[64]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.