PPPM and TreePM Methods on GRAPE Systems for Cosmological N-body Simulations

We present Particle-Particle-Particle-Mesh (PPPM) and Tree Particle-Mesh (TreePM) implementations on GRAPE-5 and GRAPE-6A systems, special-purpose hardware accelerators for gravitational many-body simulations. In our PPPM and TreePM implementations on GRAPE, the computational time is significantly reduced compared with the conventional implementations without GRAPE, especially under the strong particle clustering, and almost constant irrespective of the degree of particle clustering. We carry out the survey of two simulation parameters, the PM grid spacing and the opening parameter for the most optimal combination of force accuracy and computational speed. We also describe the parallelization of these implementations on a PC-GRAPE cluster, in which each node has one GRAPE board, and present the optimal configuration of simulation parameters for good parallel scalability.

[1]  ABUNDANCE OF MODERATE-REDSHIFT CLUSTERS IN THE COLD PLUS HOT DARK MATTER MODEL , 1994, astro-ph/9403012.

[2]  J. Bagla TreePM: A code for cosmological N-body simulations , 1999, astro-ph/9911025.

[3]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[4]  Toshiyuki Fukushige,et al.  GRAPE-6: Massively-Parallel Special-Purpose Computer for Astrophysical Particle Simulations , 2003, astro-ph/0310702.

[5]  R. Susukita Fast and Accurate P 3 M Cosmological Simulations Using a Hardware Accelerator , 2004 .

[6]  Toshikazu Ebisuzaki,et al.  Hardware accelerator for molecular dynamics: MDGRAPE-2 , 2003 .

[7]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[8]  Toshikazu Ebisuzaki,et al.  A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE , 1996 .

[9]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[10]  M. Steinmetz,et al.  The Santa Barbara Cluster Comparison Project: A Comparison of Cosmological Hydrodynamics Solutions , 1999, astro-ph/9906160.

[11]  Jeremiah P. Ostriker,et al.  Cosmological simulations using special purpose computers: Implementing P**3M on GRAPE , 1995 .

[12]  T. Fukushige,et al.  The Mean Pairwise Peculiar Velocity in Cosmological N-Body Simulations: Time Variation, Scale Dependence, and the Stable Condition , 2001, astro-ph/0107011.

[13]  Y. Jing,et al.  Cosmological Smoothed Particle Hydrodynamic Simulations with Four Million Particles: Statistical Properties of X-Ray Clusters in a Low-Density Universe , 2000, astro-ph/0001076.

[14]  John Dubinski,et al.  GOTPM: A Parallel Hybrid Particle-Mesh Treecode , 2004 .

[15]  Jeremiah P. Ostriker,et al.  Tree Particle-Mesh: An Adaptive, Efficient, and Parallel Code for Collisionless Cosmological Simulation , 2003 .

[16]  Atsushi Kawai,et al.  GRAPE-5: A Special-Purpose Computer for N-Body Simulations , 1999, astro-ph/9909116.

[17]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[18]  Philippe P. Brieu,et al.  P4M: a parallel version of P3M , 1998 .

[19]  Joshua E. Barnes,et al.  A modified tree code: don't laugh; it runs , 1990 .

[20]  J. W. Eastwood,et al.  On the clustering of particles in an expanding Universe , 1981 .

[21]  Makoto Taiji,et al.  Scientific simulations with special purpose computers - the GRAPE systems , 1998 .

[22]  H. M. P. Couchman,et al.  Simulating the formation of a cluster of galaxies , 1992 .

[23]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[24]  Nonlinear Stochastic Biasing of Galaxies and Dark Halos , 2001, astro-ph/0104361.

[25]  Jeremiah P. Ostriker,et al.  The Tree-particle-mesh N-body gravity solver , 1999 .

[26]  Toshikazu Ebisuzaki,et al.  A special-purpose computer for gravitational many-body problems , 1990, Nature.

[27]  J. M. Gelb,et al.  Cosmological N‐Body Simulations , 1991 .

[28]  J. Makino,et al.  GRAPE-6A: A Single-Card GRAPE-6 for Parallel PC-GRAPE Cluster Systems , 2005, astro-ph/0504407.