Modification of electron transport layer by implantation of Ni+2 ions for achieving high efficiency in dye-sensitized solar cells

[1]  S. Hussain,et al.  The Effect of 600 keV Ag Ion Irradiation on the Structural, Optical, and Photovoltaic Properties of MAPbBr3 Films for Perovksite Solar Cell Applications , 2022, Materials.

[2]  M.I. Khan,et al.  Effect of Fe ions beam on the structural, optical, photovoltaic properties of TiO2 based dye-sensitized solar cells , 2021, Optical Materials.

[3]  Dhananjaya Kekuda,et al.  Investigation of structural and optical properties of spin coated TiO2:Mn thin films , 2021 .

[4]  T. Raguram,et al.  Effect of Ni doping on the characterization of TiO2 nanoparticles for DSSC applications , 2021, Journal of Materials Science: Materials in Electronics.

[5]  Jae Hong Kim,et al.  Towards achieving improved efficiency using newly designed dye-sensitized solar cell devices engineered with dye-anchored counter electrodes , 2021, Journal of Industrial and Engineering Chemistry.

[6]  M. I. Khan,et al.  Effect of silver (Ag) ions irradiation on the structural, optical and photovoltaic properties of Mn doped TiO2 thin films based dye sensitized solar cells , 2021 .

[7]  G. Mustafa,et al.  Improved photovoltaic properties of dye sensitized solar cell by irradiations of Ni2+ ions on Ag‐doped TiO2 photoanode , 2021, International Journal of Energy Research.

[8]  W. Al-Masry,et al.  Investigations on the efficiency variation of zinc and gallium Co-doped TiO2 based dye sensitized solar cells , 2020 .

[9]  Sirong Yu,et al.  Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity , 2020 .

[10]  M. R. Ramana Reddy,et al.  Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films , 2020 .

[11]  M. Iqbal,et al.  Structural and optical properties of Ti and Cu co‐doped ZnO thin films for photovoltaic applications of dye sensitized solar cells , 2020, International Journal of Energy Research.

[12]  G. Mustafa,et al.  300 keV cobalt ions irradiations effect on the structural, morphological, optical and photovolatic properties of Zn doped TiO2 thin films based dye sensitized solar cells , 2020 .

[13]  Serif Ruzgar,et al.  The effect of Fe dopant on structural, optical properties of TiO2 thin films and electrical performance of TiO2 based photodiode , 2020 .

[14]  S. Al-Shomar Investigation the effect of doping concentration in Ruthenium-doped TiO2 thin films for solar cells and sensors applications , 2020, Materials Research Express.

[15]  R. A. Ilyas,et al.  Effect of ultrasonication duration of polyvinyl alcohol (PVA) gel on characterizations of PVA film , 2020 .

[16]  A. S. Abouhaswa Physical properties of anatase TiO2 nanocrystallites: based photoanodes doped with Cr2O3 , 2020, Optical and Quantum Electronics.

[17]  F. Sen,et al.  Synthesis, characterization, and application of transition metals (Ni, Zr, and Fe) doped TiO2 photoelectrodes for dye-sensitized solar cells , 2020 .

[18]  K. Taguchi,et al.  Enhancing DSSC Photoanode Performance by Using Ni-Doped TiO2 to Fabricate Scattering Layers , 2020, Journal of Electronic Materials.

[19]  T. Raguram,et al.  Structural, Optical, Functional, Morphological and Compositional Analysis of Ni - doped TiO2 Nanofibers Prepared by Electrospinning Technique , 2019, IOP Conference Series: Materials Science and Engineering.

[20]  M. Devi,et al.  Effect of Mn doping on the Optical and Electrical Properties of TiO2 thin film prepared by Unconventional Sol-gel route , 2019, IOP Conference Series: Materials Science and Engineering.

[21]  T. Raguram,et al.  Characterization of TiO2 photoanodes and natural dyes (Allamanda Blanchetti and Allamanda Cathartica) extract as sensitizers for dye-sensitized solar cell applications , 2019, Journal of Sol-Gel Science and Technology.

[22]  Dainan Zhang,et al.  Transition-Metal-Ion (Fe, Co, Cr, Mn, Etc.) Doping of TiO2 Nanotubes: A General Approach. , 2019, Inorganic chemistry.

[23]  Adnan Ali,et al.  900 keV Au ions implantation effect on the efficiency of dye sensitized solar cells , 2019, Results in Physics.

[24]  A. S. Rini Diffraction Pattern Simulation of Crystal Structure towards the Ionic Radius Changes Via Vesta Program , 2019, Journal of Technomaterials Physics.

[25]  Xuanyong Liu,et al.  Enhanced osteogenic activity and bacteriostatic effect of TiO2 coatings via hydrogen ion implantation , 2019, Materials Letters.

[26]  T. Raguram,et al.  Synthesis and analysing the structural, optical, morphological, photocatalytic and magnetic properties of TiO2 and doped (Ni and Cu) TiO2 nanoparticles by sol–gel technique , 2019, Applied Physics A.

[27]  A. Khalil,et al.  Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes , 2019, Journal of Nanomaterials.

[28]  G. Mandal,et al.  Significant reduction in the optical band-gap and defect assisted magnetic response in Fe-doped anatase TiO2 nanocrystals as dilute magnetic semiconductors , 2019, New Journal of Chemistry.

[29]  Shivani Sharma,et al.  Effect of tungsten doping on structural and optical properties of rutile TiO2 and band gap narrowing , 2019, Optik.

[30]  G. Mandal,et al.  Structural, optical and magnetic behavior of sol-gel derived Ni-doped dilute magnetic semiconductor TiO2 nanocrystals for advanced functional applications. , 2019, Physical chemistry chemical physics : PCCP.

[31]  S. Naseem,et al.  Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings–A sol-gel approach , 2018, Journal of Alloys and Compounds.

[32]  M. Yilmaz,et al.  Room temperature deposition of XRD-amorphous TiO2 thin films: Investigation of device performance as a function of temperature , 2018, Ceramics International.

[33]  Nasrollah Najibi Ilkhechi,et al.  Effect of Ni Doping on the Structural and Optical Properties of TiO2 Nanoparticles at Various Concentration and Temperature , 2018, Silicon.

[34]  T. Sakthivel,et al.  Silver doped TiO2 nano crystallites for dye-sensitized solar cell (DSSC) applications , 2017 .

[35]  C. Tatar,et al.  Sol-gel synthesis and characterization of TiO2 powder , 2017 .

[36]  L. Patle,et al.  Band edge movement and structural modifications in transition metal doped TiO2 nanocrystals for the application of DSSC , 2017 .

[37]  A. A. Umar,et al.  Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs , 2017 .

[38]  G. Kolbasov,et al.  Sol-gel Synthesis, Photo- and Electrocatalytic Properties of Mesoporous TiO2 Modified with Transition Metal Ions , 2017, Nanoscale Research Letters.

[39]  Endarko,et al.  The influence of various concentrations of N-doped TiO2 as photoanode to increase the efficiency of dye-sensitized solar cell , 2017 .

[40]  Vipin Amoli,et al.  Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells , 2016 .

[41]  M. Radhakrishnan,et al.  Influence of sprayed nanocrystalline Zn-doped TiO2 photoelectrode with the dye extracted from Hibiscus Surattensis as sensitizer in dye-sensitized solar cell , 2016 .

[42]  N. H. Hussin,et al.  Structural, Electronic and Optical Properties of Nd-Doped Anatase TiO2 for Dye-Sensitized Solar Cells from Density Functional Theory , 2016 .

[43]  Wei Wen,et al.  Ni-doped rutile TiO2 nanoflowers: low-temperature solution synthesis and enhanced photocatalytic efficiency , 2016 .

[44]  S. M. Shah,et al.  Effect of carrier concentration on the optical band gap of TiO2 nanoparticles , 2016 .

[45]  A. Bouaza,et al.  Characterization of Ni-doped TiO2 thin films deposited by dip-coating technique , 2015 .

[46]  L. Hsu,et al.  Kinetic study of self-assembly of Ni(II)-doped TiO2 nanocatalysts for the photodegradation of azo pollutants , 2015 .

[47]  Yan Shi,et al.  Band edge movement in dye sensitized Sm-doped TiO2 solar cells: a study by variable temperature spectroelectrochemistry , 2015 .

[48]  S. K. Mishra,et al.  Photoluminescence And Photoconductivity Of Ni Doped Titania Nanoparticles , 2015 .

[49]  A. Ghosh,et al.  Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations , 2014 .

[50]  N. Muthukumarasamy,et al.  Fabrication of Ni-doped TiO2 thin film photoelectrode for solar cells , 2014 .

[51]  M. J. Siddiqui,et al.  Electrical and Optical Properties of Nickel- and Molybdenum-Doped Titanium Dioxide Nanoparticle: Improved Performance in Dye-Sensitized Solar Cells , 2014, Journal of Materials Engineering and Performance.

[52]  Yulin Yang,et al.  Rapid Electron Injection in Nitrogen- and Fluorine-Doped Flower-Like Anatase TiO2 with {001} Dominated Facets and Dye-Sensitized Solar Cells with a 52% Increase in Photocurrent , 2014 .

[53]  H. Abdullah,et al.  Structural Behavior of Ni-Doped TIO2 Nanoparticles and its Photovoltaic Performance on Dye-Sensitized Solar Cell (DSSC) , 2014 .

[54]  S. S. Meena,et al.  Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles , 2012 .

[55]  S. Neogi,et al.  Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film , 2012, 1210.4698.

[56]  Jing Zhang,et al.  Effect of Cerium Doping in the TiO2 Photoanode on the Electron Transport of Dye-Sensitized Solar Cells , 2012 .

[57]  Alevgul H. Sorman,et al.  Energy transitions and the global land rush: Ultimate drivers and persistent consequences , 2012 .

[58]  S. Raga,et al.  Analysis of the Origin of Open Circuit Voltage in Dye Solar Cells. , 2012, The journal of physical chemistry letters.

[59]  Lin Sun,et al.  Effects of Co doping on structure and optical properties of TiO2 thin films prepared by sol–gel method , 2012 .

[60]  A. Fujishima,et al.  Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films , 2012 .

[61]  Jung-Kun Lee,et al.  Progress in light harvesting and charge injection of dye-sensitized solar cells , 2011 .

[62]  S. Neogi,et al.  Effect of 50 MeV Li3 + irradiation on structural and electrical properties of Mn-doped ZnO , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  Ji-Yeon Chae,et al.  Cubic titanium dioxide photoanode for dye-sensitized solar cells , 2011 .

[64]  P. Balraju,et al.  Simple sensitizers of low band gap based on 4-nitro-α-cyanostilbene prepared from a one-step reaction for efficient dye-sensitized solar cells , 2010 .

[65]  M. A. Ischay,et al.  Visible light photocatalysis as a greener approach to photochemical synthesis. , 2010, Nature chemistry.

[66]  Jin Kyoung Kim,et al.  Analysis of TiO2 thickness effect on characteristic of a dye-sensitized solar cell by using electrochemical impedance spectroscopy , 2010 .

[67]  Yang Huang,et al.  Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells , 2010 .

[68]  P. Jena,et al.  Polyol-Mediated Synthesis of Ultrafine TiO2 Nanocrystals and Tailored Physiochemical Properties by Ni Doping , 2009 .

[69]  Jiban Podder,et al.  Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor , 2009, Crystal Research and Technology.

[70]  Andrei Ghicov,et al.  Photoresponse in the visible range from Cr doped TiO2 nanotubes , 2007 .

[71]  Nikos Kopidakis,et al.  Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. , 2006, The journal of physical chemistry. B.

[72]  Yuji Wada,et al.  Importance of blocking layers at conducting glass/TiO2 interfaces in dye-sensitized ionic-liquid solar cells , 2006 .

[73]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[74]  Won-Jae Lee,et al.  Transparent conductive ZnO thin films on glass substrates deposited by pulsed laser deposition , 2005 .

[75]  Qing Shen,et al.  Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates , 2004 .

[76]  Ying Yang,et al.  Effect of doping mode on the photocatalytic activities of Mo/TiO2 , 2004 .

[77]  L.K.J. Vandamme,et al.  General relation between refractive index and energy gap in semiconductors , 1994 .

[78]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[79]  Jan Augustynski,et al.  Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films , 1988 .

[80]  H. Pulker,et al.  Refractive indices of TiO(2) films produced by reactive evaporation of various titanium-oxygen phases. , 1976, Applied optics.

[81]  T. Raguram,et al.  Influence of boron doping on the structural, spectral, optical and morphological properties of TiO2 nanoparticles synthesized by sol–gel technique for DSSC applications , 2020, Materials Today: Proceedings.

[82]  A. Ruys Processing, structure, and properties of alumina ceramics , 2019, Alumina Ceramics.

[83]  R. S. Dubey,et al.  Investigation of structural and optical properties of pure and chromium doped TiO 2 nanoparticles prepared by solvothermal method , 2017 .

[84]  K. Byrappa,et al.  Characterization of transparent semiconducting cobalt doped titanium dioxide thin films prepared by sol–gel process , 2017, Journal of Materials Science: Materials in Electronics.