Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects.

Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.

Colin A. Ellis | M. Daly | I. Scheffer | H. Hakonarson | P. Sham | P. May | K. Yamakawa | B. Neale | R. Krause | C. Elger | R. Kuzniecky | A. Schulze-Bonhage | B. Steinhoff | T. Mayer | Y. Feng | F. Piras | F. Piras | G. Spalletta | F. Cheng | Yadi Zhou | M. Sperling | A. Palotie | S. Gallati | P. Striano | P. Kwan | S. Schachter | S. Cherny | O. Devinsky | C. Cotsapas | A. Marson | S. Sisodiya | U. Stephani | C. Özkara | S. Berkovic | D. Lowenstein | H. Lerche | F. Rosenow | N. Gupta | D. Howrigan | S. Petrovski | A. Korczyn | C. Depondt | G. Cavalleri | F. Zara | B. Castellotti | Manuela Pendziwiat | H. Muhle | Y. Weber | I. Helbig | P. Khankhanian | S. Knake | M. Bahlo | T. O'Brien | S. Franceschetti | N. Delanty | E. Heinzen | T. Pippucci | K. Štěrbová | K. Tashman | Felecia Cerrato | C. Churchhouse | S. Kamalakaran | R. Burgess | K. Klein | P. Nürnberg | C. Doherty | P. Auvinen | A. Gambardella | R. Guerrini | R. Kälviäinen | A. Labate | W. Lo | D. Mei | J. Bauer | M. Privitera | V. Salpietro | R. Mameniškienė | V. Ciullo | E. Pérez-Palma | W. Kunz | D. Dlugos | Arif Shukralla | G. Sills | A. Poduri | L. Baum | H. Krestel | Baris Salman | P. Cossette | P. de Jonghe | B. Kara | D. Lal | C. Schankin | H. Schreiber | K. Helbig | Tracy J Dixon-Salazar | T. Granata | F. Bisulli | L. Canafoglia | Y. Inoue | K. Brockmann | T. Gili | N. Bebek | Tara R. Sadoway | L. Licchetta | P. Tinuper | A. Lehesjoki | D. Andrade | N. Barišić | J. Lemke | T. Linnankivi | C. Marini | S. von Spiczak | S. Weckhuysen | Toshimitsu Suzuki | G. Kurlemann | Lisa-Marie Niestroj | S. Schubert-Bast | A. Poduri | R. Buono | T. Ferraro | C. Leu | M. McCormack | F. Becker | G. Tanteles | M. Iacomino | S. H. Çağlayan | M. Rees | W. O. Pickrell | M. Häusler | A. Vetro | S. Papacostas | I. Krey | U. Yiş | B. Baykan | M. S. Vari | P. Reif | R. Korinthenberg | M. Todaro | D. Turkdoğan | G. Annesi | P. Auce | Liam E. Abbott | E. Parrini | M. Kanaan | A. Utkus | Jacqueline A. French | D. Dennig | Randy Stewart | K. McKenna | B. Regan | Catherine Shain | L. Sadleir | L. Sedláčková | M. Vlčková | P. Laššuthová | G. Kluger | K. Müller-Schlüter | S. Zagaglia | Hannah Stamberger | S. Balestrini | Viola Doccini | Annika Rademacher | Christina Canavati | Z. Afawi | Susannah T. Bellows | C. Freyer | A. van Baalen | Martino Montomoli | C. Lui | M. Arslan | Beth R Sheidley | Kelly Mo | Seo-Kyung Chung | F. Madia | Brigid M. Regan | Rūta Samaitienė | A. Macdonald | B. Tumienė | Manu Hegde | M. Mancardi | Rūta Praninskienė | L. Muccioli | C. Stipa | I. Borggräfe | I. Blatt | Z. Yapıcı | Elmo Saarentaus | R. Stevelink | D. Goldstein | C. A. Bennett | Esther C Johns | H. Shilling | Dorien Weckhuysen | Ioanna Kousiappa | G. Zsurka | M. Rademacher | S. Wolking | Christian Hengsbach | S. Rau | Ana F. Maisch | R. Madeleyn | Anni Saarela | R. Powell | Natascha Schneider | V. Braatz | Michael R. Johnson | Hany El-Naggar | R. Minardi | Lorella Manna | M. Gagliardi | C. Bianchini | Jurgita Grikiniene | Chontelle King | Emily I. Mountier | Pınar Topaloğlu | Aslı Gundogdu-Eken | Sibel Uğur-İşeri | Garen Haryanyan | E. Yücesan | Y. Kesim | Hannah S Shilling | D. Lowenstein | Robert Powell | L. Abbott | B. Sheidley | Tracy Dixon-Salazar | A. Maisch | T. O’Brien | D. Lal | C. Ellis | S. Chung | Emily Mountier | M. Vari | Eduardo Pérez-Palma | Ingo Borggräfe | S. Bellows | A. Schulze‐Bonhage | P. Topaloğlu | Pouya Khankhanian | A. Lehesjoki | Ç. Özkara | Dennis Lal | Felix Rosenow | Anthony G. Marson | Paolo Tinuper | Bernhard J. Steinhoff | Andreas Schulze-Bonhage | Christian E. Elger | B. Neale | I. Kousiappa | M. Daly | U. Stephani | Patrick May | Y. Weber | S. Sisodiya | A. Gambardella | Norman Delanty | Gianfranco Spalletta | Ingrid E. Scheffer | S. Çağlayan | Mark McCormack | Roland Krause | Wolfram S Kunz | A. G. Marson | Michael R. Johnson | H. Lerche | Thomas N. Ferraro | Namrata Gupta | P. C. Sham | Tracy Dixon-Salazar | Amos D. Korczyn | C. Elger | Yen-Chen Anne Feng | David B Goldstein | Patrick Kwan | Kevin McKenna | Esther C Johns | Alexandra Macdonald | Hannah Shilling | Terence J. O'Brien | Marian Todaro | Danielle M. Andrade | Tara R Sadoway | Sabina Gallati | Jürgen Bauer | Martin Häusler | Ilan Blatt | Herbert Schreiber | Thomas Mayer | Rudolf Korinthenberg | Mark I Rees | Larry Baum | Colin P. Doherty | Toshimitsu Suzuki | Yushi Inoue | Kazuhiro Yamakawa | R. Mameniskiene | Bulent Kara | Michael R. Sperling | Warren Lo | Michael Privitera | Steven C. Schachter | Warren D. Lo | Mark Mccormack | P. Tinuper | E. Johns | Moien Kanaan | Birutė Tumienė | N. Delanty | Tara Sadoway | Mark I. Rees | Michael D Privitera

[1]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[2]  H. Mefford,et al.  Genetically complex epilepsies, copy number variants and syndrome constellations , 2010, Genome Medicine.

[3]  Joshua M. Korn,et al.  Association between microdeletion and microduplication at 16p11.2 and autism. , 2008, The New England journal of medicine.

[4]  I. Scheffer,et al.  Rare copy number variants are an important cause of epileptic encephalopathies , 2011, Annals of neurology.

[5]  Michael R. Johnson,et al.  Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. , 2010, American journal of human genetics.

[6]  P. Stankiewicz,et al.  Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities , 2008, Nature Genetics.

[7]  G. Carvill,et al.  Microdeletion syndromes. , 2013, Current opinion in genetics & development.

[8]  Alan R. Mardinly,et al.  The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc , 2010, Cell.

[9]  Kathryn Roeder,et al.  Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism , 2011, Neuron.

[10]  Guillaume Bourque,et al.  Global characterization of copy number variants in epilepsy patients from whole genome sequencing , 2018, PLoS genetics.

[11]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[12]  Eric P Hoffman,et al.  Genomics, intellectual disability, and autism. , 2012, The New England journal of medicine.

[13]  R. Tanzi,et al.  Rare autosomal copy number variations in early-onset familial Alzheimer’s disease , 2014, Molecular Psychiatry.

[14]  Bradley P. Coe,et al.  A genetic model for neurodevelopmental disease , 2012, Current Opinion in Neurobiology.

[15]  C. Baker,et al.  Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. , 2010, Brain : a journal of neurology.

[16]  I. Scheffer,et al.  A roadmap for precision medicine in the epilepsies , 2015, The Lancet Neurology.

[17]  H. Horn,et al.  Heterogeneous contribution of microdeletions in the development of common generalised and focal epilepsies , 2017, Journal of Medical Genetics.

[18]  Robert T. Schultz,et al.  Autism genome-wide copy number variation reveals ubiquitin and neuronal genes , 2009, Nature.

[19]  Amina Noor,et al.  Frequency and Complexity of De Novo Structural Mutation in Autism. , 2016, American journal of human genetics.

[20]  J. Noebels Single-Gene Determinants of Epilepsy Comorbidity. , 2015, Cold Spring Harbor perspectives in medicine.

[21]  J. R. MacDonald,et al.  A copy number variation map of the human genome , 2015, Nature Reviews Genetics.

[22]  Christian E Elger,et al.  15q13.3 microdeletions increase risk of idiopathic generalized epilepsy , 2009, Nature Genetics.

[23]  Boris Yamrom,et al.  Rare De Novo and Transmitted Copy-Number Variation in Autistic Spectrum Disorders , 2011, Neuron.

[24]  G. Cooper,et al.  Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy , 2016, Neurology: Genetics.

[25]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[26]  Ryan Mills,et al.  Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants , 2011, Nature Biotechnology.

[27]  Yu-Wang Liu,et al.  Positive and negative regulation of APP amyloidogenesis by sumoylation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Ghetti,et al.  A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. , 1991, Science.

[29]  Heather C Mefford,et al.  Duplication hotspots, rare genomic disorders, and common disease. , 2009, Current opinion in genetics & development.

[30]  De novo mutations in epileptic encephalopathies , 2013 .

[31]  Huang Gao,et al.  Database resources of the National Center for Biotechnology Information , 2015, Nucleic Acids Res..

[32]  Michael R. Johnson,et al.  Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals , 2019, bioRxiv.

[33]  J. H. Cross,et al.  Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009 , 2010, Epilepsia.

[34]  Douglas W. Woods,et al.  Rare Copy Number Variants in NRXN1 and CNTN6 Increase Risk for Tourette Syndrome , 2016, Neuron.

[35]  G. Carvill,et al.  Copy number variants are frequent in genetic generalized epilepsy with intellectual disability , 2013, Neurology.

[36]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[37]  G. Kirov,et al.  Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank , 2018, Journal of Medical Genetics.

[38]  Christian Bottomley,et al.  Estimation of the burden of active and life-time epilepsy: A meta-analytic approach , 2010, Epilepsia.

[39]  I. Scheffer,et al.  Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. , 2009, Human molecular genetics.

[40]  H. Mefford,et al.  Diagnostic implications of genetic copy number variation in epilepsy plus , 2019, Epilepsia.

[41]  Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals , 2019 .

[42]  Joseph T. Glessner,et al.  PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. , 2007, Genome research.

[43]  G. Winterer,et al.  Extending the phenotypic spectrum of RBFOX1 deletions: Sporadic focal epilepsy , 2015, Epilepsia.

[44]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[45]  I. Scheffer,et al.  Epilepsy , 2018, Nature Reviews Disease Primers.

[46]  M. Fichera,et al.  Clinical significance of rare copy number variations in epilepsy: a case-control survey using microarray-based comparative genomic hybridization. , 2012, Archives of neurology.

[47]  Dean Nizetic,et al.  A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome , 2015, Nature Reviews Neuroscience.

[48]  R. Rosch,et al.  Analysis of rare copy number variation in absence epilepsies , 2016, Neurology: Genetics.

[49]  H. Mefford,et al.  Primer Part 1—The building blocks of epilepsy genetics , 2016, Epilepsia.

[50]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[51]  Christian Gieger,et al.  Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies , 2015, PLoS genetics.

[52]  I. Scheffer,et al.  The genetic landscape of the epileptic encephalopathies of infancy and childhood , 2016, The Lancet Neurology.

[53]  Ulrich Stephani,et al.  Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies , 2010, PLoS genetics.

[54]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[55]  H. Man,et al.  The Autism and Angelman Syndrome Protein Ube3A/E6AP: The Gene, E3 Ligase Ubiquitination Targets and Neurobiological Functions , 2019, Front. Mol. Neurosci..

[56]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[57]  Yaniv Erlich,et al.  Abundant contribution of short tandem repeats to gene expression variation in humans , 2015, Nature Genetics.

[58]  C. Bulteau,et al.  Dissecting the genetic basis of focal cortical dysplasia: a large cohort study , 2019, Acta Neuropathologica.

[59]  Christian Gieger,et al.  Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies , 2018, Nature Communications.

[60]  Wei Cheng,et al.  Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects , 2016, Nature Genetics.

[61]  Andrew Menzies,et al.  X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment , 2008, Nature Genetics.

[62]  F. Duffy,et al.  Copy number variation plays an important role in clinical epilepsy , 2014, Annals of neurology.

[63]  Edouard Hirsch,et al.  ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology , 2017, Epilepsia.

[64]  M. Daly,et al.  De novo variants in neurodevelopmental disorders with epilepsy , 2018, Nature Genetics.

[65]  H. Mefford CNVs in Epilepsy , 2014, Current Genetic Medicine Reports.