Density Functional Theory for Molecular and Periodic Systems Using Density Fitting and Continuous Fast Multipole Methods.

An implementation of Kohn-Sham density functional theory within the TURBOMOLE program package with Gaussian-type orbitals (GTO) as basis functions is reported that treats molecular and periodic systems of any dimensionality on an equal footing. Its key component is a combination of density fitting/resolution of identity (DF) approximation and continuous fast multipole method (CFMM) applied for the electronic Coulomb term. This DF-CFMM scheme operates entirely in the direct space and partitions Coulomb interactions into far-field part evaluated using multipole expansions and near-field contribution calculated employing density fitting. Computational efficiency and favorable scaling behavior of our implementation approaching O(N) for the formation of Kohn-Sham matrix is demonstrated for various molecular and periodic systems including three-dimensional models with unit cells containing up to 640 atoms and 19072 GTO basis functions.

[1]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[2]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[3]  Robert M. Hazen,et al.  Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase , 1976 .

[4]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[5]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[6]  Roberto Dovesi,et al.  Exact-exchange Hartree–Fock calculations for periodic systems. I. Illustration of the method† , 1980 .

[7]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[8]  P. Pulay Improved SCF convergence acceleration , 1982 .

[9]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[10]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[11]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[12]  Benny G. Johnson,et al.  A standard grid for density functional calculations , 1993 .

[13]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[14]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[15]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[16]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .

[17]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283-290) , 1995 .

[18]  Martin Head-Gordon,et al.  Fractional tiers in fast multipole method calculations , 1996 .

[19]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[20]  Mauro Causà,et al.  Density functional theory in periodic systems using local Gaussian basis sets , 1996 .

[21]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  Anthony C. Hess,et al.  Gaussian basis density functional theory for systems periodic in two or three dimensions: Energy and forces , 1996 .

[24]  Gustavo E. Scuseria,et al.  A fast multipole algorithm for the efficient treatment of the Coulomb problem in electronic structure calculations of periodic systems with Gaussian orbitals , 1998 .

[25]  Gustavo E. Scuseria,et al.  A fast multipole method for periodic systems with arbitrary unit cell geometries , 1998 .

[26]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[27]  K. Kudin,et al.  Linear scaling density functional theory with Gaussian orbitals and periodic boundary conditions , 2000 .

[28]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[29]  Gustavo E Scuseria,et al.  Revisiting infinite lattice sums with the periodic fast multipole method. , 2004, The Journal of chemical physics.

[30]  Martin Head-Gordon,et al.  Auxiliary basis expansions for large-scale electronic structure calculations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[32]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[33]  Joseph E. Subotnik,et al.  Linear scaling density fitting. , 2006, The Journal of chemical physics.

[34]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[35]  Scarontefan Varga Long-range analysis of density fitting in extended systems† , 2008 .

[36]  L. Maschio,et al.  Fitting of local densities in periodic systems , 2008 .

[37]  Artur F Izmaylov,et al.  Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. , 2008, Physical chemistry chemical physics : PCCP.

[38]  Asbjörn M. Burow,et al.  Resolution of identity approximation for the Coulomb term in molecular and periodic systems. , 2009, The Journal of chemical physics.

[39]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[40]  Notker Rösch,et al.  Variational fitting methods for electronic structure calculations , 2010 .

[41]  Asbjörn M Burow,et al.  Linear Scaling Hierarchical Integration Scheme for the Exchange-Correlation Term in Molecular and Periodic Systems. , 2011, Journal of chemical theory and computation.

[42]  Ravishankar Sundararaman,et al.  Regularization of the Coulomb singularity in exact exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in nontrivial systems , 2013, 1302.6204.

[43]  Thomas Bredow,et al.  Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations , 2013, J. Comput. Chem..

[44]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[45]  L. Visscher,et al.  Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting. , 2014, Journal of chemical theory and computation.